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Abstract

A primary method of collecting evidence against a group of misbehaving agents

(e.g., a cartel) is to offer whistleblower rewards to agents who come forward with evi-

dence. But even before a whistleblower comes forward, the regulator typically possesses

her own private evidence, though it may not guarantee conviction in court. This paper

studies how revealing this private evidence to group members can facilitate whistle-

blowing. The more damning the regulator’s evidence, the more incentivized, all else

equal, a whistleblower is to come forward. I formalize this environment using informa-

tion design in games. A principal (sender) informs two agents (receivers), about a state

(the evidence state) that affects the payoffs to whistleblowing. I first ask, if agents can

communicate amongst themselves, can the principal improve over public communica-

tion with the group? I answer the question in the affirmative, and provide conditions

under which the principal’s value is independent of whether agents can communicate

or not. Second, interpreting the evidence state as the probability of conviction with-

out a whistleblower, I characterize optimal outcomes and show that the likelihood of

whistleblowing is increasing in this probability. I show that the principal can facilitate

more whistleblowing in groups with more asymmetrically distributed gains from mis-

behavior across agents. Finally, I demonstrate a class of simple information structures

that, though potentially suboptimal, robustly improve over public communication.

∗Princeton University: kapon@nyu.edu. I thank Sylvain Chassang, Guillaume Fréchette, Alessandro
Lizzeri, Dilip Abreu, Navin Kartik, Paula Onuchic, Elliot Lipnowski, and Mauricio Ribeiro for valuable
discussions and comments.
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1 Introduction

Regulatory agencies often use whistleblower rewards to destabilize groups of misbehaving

agents. For instance, the Department of Justice (DOJ) operates a leniency policy, whereby

cartel members may provide evidence against their partners and secure lenient treatment

during prosecution of the cartel. Similar policies are operated by the European Commission,

and many other antitrust authorities. These policies are key to the success of antitrust

efforts; indeed, the DOJ calls its leniency policy “its most important investigative tool for

detecting cartel activity.”1,2 The standard of evidence required in court to prove antitrust

violations is high; as a result, cooperation from a member of the conspiracy is often critical

for success in court.

Prior to a whistleblower coming forward, the regulator often possesses evidence of wrong-

doing; in the case of cartels, this could be information from third parties, such as aggrieved

buyers, documents discovered in unannounced inspections (dawn raids), or suspicious market

activity. This evidence can be used to encourage whistleblowers. An agent who learns that

the regulator has strong rather than weak evidence may be more incentivized to approach

the regulator with information to avoid harsh punishment. The central question of this paper

is then, how should a regulator reveal its private evidence to a group of misbehaving agents,

to encourage whistleblowing? I focus on three sets of sub-questions. Does communication

between group members—an inherent feature in these settings—mean the principal can do no

better than publicly communicating with the group and if not, how harmful is communication

between group members? What do optimal whistleblowing outcomes look like, and how

do they vary with the underlying features of the misbehaving group? Finally, are there

simple information structures that improve over public communication alone that can be

implemented without exact knowledge of primitives?

To address these questions, I study a problem of information design in games, with a

principal (sender) and two agents (receivers). The principal commits to an information

structure over a state, sending a private signal to each agent. In the motivating settings,

the state represents the principal’s private evidence, and so I refer to it as the evidence

state. Agents share a prior over possible evidence states and, after communication from

the principal, each agent chooses one of two actions: inform the principal on the group’s

1https://www.justice.gov/atr/leniency-program
2In the literature studying antitrust leniency policies, a cartel member who brings forward evidence to

the regulator with the objective of receiving leniency is typically called a leniency applicant, while the term
whistleblower is often instead reserved for those outside the cartel who provide the regulator with evidence.
In this paper, I instead use the term whistleblower to refer to the former.
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misbehavior, or not. Payoffs are state-contingent, and in every evidence state, the principal

prefers more agents inform. I make two assumptions on agents’ preferences: (i) each agent

prefers their partner not inform the principal, and (ii) each agent prefers to inform the

principal if their partner does. Given the assumptions on agents’ preferences, equilibrium

multiplicity may arise. While there always exists a favorable equilibrium for the principal in

which both agents inform, there may also exist an unfavorable equilibrium in which neither

does. I evaluate information structures robustly, by the worst possible equilibrium for the

principal that they generate.3,4

While Bayesian Nash Equilibrium (BNE) is a standard solution concept in related set-

tings, a natural feature of this environment is that agents can communicate. At least in the

case of cartels, they are already communicating about various aspects of the crime, and may

even have access to an explicit mediator of communication.5 As a result, the set of outcomes

over which the principal’s worst case is evaluated is the set of communication equilibria, al-

lowing for the possibility that players communicate private information supplied to them by

the principal before acting. Communication is formulated generally, as in Myerson (1982)—a

communication equilibrium is a mapping from type reports by agents into a distribution over

private recommendations to agents (which can be interpreted as coming from a mediator) of

whether to inform or not, such that reporting one’s type and obeying the recommendation

is incentive compatible.

I provide three sets of results, corresponding to the three sets of questions I posed. In

the first set of results, I provide answers to the questions, can the principal improve over

public communication and if so, how harmful is communication amongst the agents to the

principal? In general, public information design is insufficient to implement the principal’s

value. Communication amongst agents can therefore be harmful if it means the principal can

only achieve public information design outcomes. My starting point is the class of unraveling

information structures, which are information structures satisfying the following property;

each type of an agent (i.e., signal agent receives from the principal) can be assigned a position

in a list such that informing is optimal if all those in higher positions inform, and agents are

never assigned the same position. These information structures guarantee that informing

is the unique BNE outcome: for agents at the top of the list, informing is dominant, for

3More precisely, information structures are evaluated by taking the infimum over equilibria, but I abuse
terminology until formally describing the model.

4Other equilibrium selection devices work as well. For instance, the principal’s worst equilibrium among
the set of equilibria that are Pareto efficient for agents leads to identical results.

5See for instance, the activities of AC-Treuhand as a facilitator of cartels (Vallery and Schell, 2016).
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agents just below them informing is (iteratively) dominant given the behavior of those at

the top, and so on, exhausting all possible positions. Information structures of this form

have been deployed extensively throughout a variety of interrelated literatures (discussed in

the literature section below)—as described in Halac, Lipnowski, and Rappoport (2022) (in

a general environment in which the principal can also make allocations), such information

structures comprise essentially all those that implement the principal’s desired action as the

unique rationalizable outcome.6

In general, unraveling information structures are not immune to communication, which I

show by example: they may yield high payoffs for the principal when agents cannot communi-

cate but low payoffs when agents can communicate. I then show that unraveling information

structures satisfying a property I call lower-rank uniqueness are immune to communication.

In particular, I establish that unraveling information structures satisfying lower-rank unique-

ness are communication-proof; they induce the same outcomes whether agents can commu-

nicate or not.7 An unraveling information structure is lower-rank unique if, after each agent

observes their position in the list, they place positive probability on at most one type of

their partner with a lower position on the list. The driving force underlying communication-

proofness is the assumption that each agent prefers his partner not inform. As a result of

this assumption, an agent who plans to inform sends whatever message leads his partner to

be most likely not to inform, so his partner is skeptical of any attempt to convince him not

to inform. In lower-rank unique unraveling information structures, this effect is so severe

that communication between agents is impossible.

Unraveling information structures are not sufficiently rich to be without loss of value

for the principal in all possible environments; if they were, then the principal could al-

ways achieve her first best. Indeed, if strong evidence against the group is sufficiently

unlikely—so that prior to communication from the principal, informing is unattractive to

agents—unraveling information structures need not exist. To solve the principal’s problem,

I therefore define partially unraveling information structures, which append to an unravel-

ing information structure the possibility of a public signal whose observation prompts both

agents not to inform. I show that if agents’ payoffs are supermodular, it is without loss of

value for the principal to restrict to partially unraveling information structures satisfying

6Unraveling information structures are a version of strict ranking schemes in Halac, Lipnowski, and
Rappoport (2022).

7A closely related argument, showing that communication is impossible in an electronic mail game with
negative spillovers (in the language of this paper, each agent prefers his partner not inform) first appears in
Baliga and Morris (1998).
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lower-rank uniqueness (Proposition 2). Supermodular payoffs can be translated into the

requirement that an agent’s gain when switching from not informing to informing is larger

when his partner is informing than when his partner is not. To prove this result, I use the

information structures in Morris, Oyama, and Takahashi (2022), which are shown in that

paper to be sufficient to implement any outcome (in BNE). In particular, I show that one

can restrict without loss of value to information structures implementing perfectly coordi-

nated outcomes—those in which either both agents inform or neither does in the principal’s

worst equilibrium. A (slightly modified) version of the subset of information structures that

implement perfectly coordinated outcomes are partially unraveling information structures

satisfying lower-rank uniqueness, and hence are communication-proof.

In my second question, I ask, how do optimal outcomes look and how do they vary

with underlying features of the environment? To provide sharp results, I specialize to linear

environments, in which evidence states are real numbers and agents’ preferences are affine

in the evidence state. I show that, as long as informing is dominant for both agents at the

highest evidence state, there exists an optimal outcome in which the likelihood that agents

inform is monotonically increasing in the evidence state. More precisely, the result states

that an optimal outcome for the principal takes a simple form: there exists a threshold

evidence state, both agents inform with certainty when the state is above the threshold, and

neither agent informs when the state is below the threshold. The result implies that, unless

the principal can achieve her first best, it is optimal to forgo inducing agents to inform in low

evidence states (i.e., low likelihood of proving misbehavior without an informant) because

it is too costly in terms of agents’ incentives. Linear environments are natural when the

evidence state is viewed as the probability that the principal can successfully prove and stop

misbehavior without an informant.

When an agent’s payoff from informing increases, holding all else fixed, the principal’s

optimal value increases. I also study how the principal’s optimal value varies across groups

with more asymmetric payoffs. In particular, consider any environment which is symmetric

across agents except for payoffs in the event that neither agent informs. I show that the

principal’s optimal value increases as the agents’ payoffs when neither informs become more

asymmetric. I discuss interpretations in the context of antitrust, in particular how shocks

to a market can create asymmetries in cartels, making them more susceptible to breakdown

via information design.

The information structures required to implement the principal’s optimal value can be

complex. In my final set of questions, I ask, are there simple information structures the prin-
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cipal can use that improve over public communication and if so, can they be implemented

without detailed knowledge of the primitives? To answer this question, I propose a class of

information structures that only require private communication in which the principal fully

discloses the state or discloses nothing—call these simple discriminatory information struc-

tures. In simple discriminatory information structures, the principal reveals a public signal

to both agents, and excludes one agent from private communication. To the other agent the

principal privately reveals the evidence state if it is a dominant strategy for that agent to

inform, but reveals nothing otherwise. In practice, the principal may already be employing

a set of public signals about her evidence e.g., press releases of an initiated investigation,

costly raids on company offices, and so on. As a result, I consider the choice of simple dis-

criminatory information structures taking as given the public signal the principal is endowed

with. I show that for any public information structure, if agents’ payoffs are supermodular,

then there is always an improving simple discriminatory information structure.

However, given a public information structure, the details of an optimal simple discrim-

inatory information structure generally depend finely on primitives. I show that the simple

discriminatory information structure that privately communicates with the agent who is least

tempted to inform improves over public communication alone, and requires the principal only

be able to express limited knowledge; the principal must be able to identify an agent who is

least tempted to inform after each public signal, and must be able to identify the states in

which it is dominant to inform for each agent (or at least a subset of such states). Given a

public signal realization, an agent is said to be the least tempted to inform if either informing

is not dominant for him, or informing is dominant for both agents.

A stronger statement can be made if there exists an agent who is unambiguously least

tempted to inform. An agent is unambigously least tempted to inform if in every state,

the payoff from informing minus the payoff from not informing, given that one’s partner is

not informing, is smaller for that agent than for his partner. If such an agent exists, then

the simple discriminatory information structure that privately communicates with the agent

who is unambiguously least tempted to inform improves over public communication alone

for any prior belief over evidence states.

The paper proceeds as follows: after describing the literature, I describe the model in

Section 2 and describe an example in Section 3. I define (partially) unraveling information

structures and their key property without communication in Section 4, and establish that

they are communication-proof if they satisfy lower-rank uniqueness in Section 5. I establish

that partially unraveling information structures satisfying lower-rank uniqueness are rich
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enough to solve the principal’s problem in supermodular environments in Section 6, study

linear environments in Section 7, describe simple discriminatory information structures in

Section 8, and discuss the model’s assumptions and limitations in Section 9.

Literature This paper is related to the literatures on the optimal design of self-reporting

policies, especially in the context of collusion, and joins a growing literature concerned with

information design in games under adversarial equilibrium selection and the closely related

literatures on contracting with externalities and unique implementation.

The optimal design of self-reporting, amnesty, whistleblowing and leniency policies in

group settings—a primary example being cartels—has spawned a large literature, including

Spagnolo (2000), Motta and Polo (2003), Harrington Jr (2008), Miller (2009), Harrington Jr

(2013), Gamba, Immordino, and Piccolo (2018), and Landeo and Spier (2020).8 Many of

these papers study design questions, but most focus on the design of the payoff environment,

whereas I focus on the design of the information environment for a fixed payoff environment.

Harrington Jr (2013) studies an environment in which firms can choose whether to apply for

leniency and have private information about the likelihood of conviction without a leniency

applicant. In discussing potential future work in its conclusion, Harrington Jr (2013) poses

the question: when the regulator has its own private information, how should it reveal it to

the firms to encourage them to come forward? This is the overarching question taken up

in this paper. A closely related paper, in motivation, in this literature is Sauvagnat (2015),

which studies the problem of an antitrust regulator who privately observes a binary signal

about the strength of its case, and can commit to a policy of opening a costly investigation

as a function of the signal. The regulator can also design a leniency policy, that rewards

cartel members for reporting information on the cartel after an investigation has begun. If

the regulator opens an investigation always when evidence is strong and sometimes when it

is weak, this can entice leniency applicants, and hence create cartel breakdown, even when

the principal’s evidence is weak. This paper provides a complementary analysis, pursuing

further the idea of the regulator signaling the strength of her evidence to cartel members,

allowing for general information policies and private communication.9

8For a comprehensive survey, see Marvão and Spagnolo (2018).
9Another relevant paper is Chassang and Ortner (2022), which details the process of regulating collusion,

and identifies a number of avenues for future research, one of which is to better understand how a regulator
can leverage privately held evidence to facilitate cartel breakdown. Chassang and Ortner (2022) also provide
a discussion of cases relating to the standards of evidence required by a court, in particular comments by
Judge Richard Posner of the U.S. Court of Appeals of the Seventh Circuit in re Text Messaging Litigation
(2010), as well as the Supreme Court case Bell Atlantic v. Twombly (2007).

7



The literature on unique implementation, contracting with externalities and divide-and-

conquer schemes includes Abreu and Matsushima (1992), Winter (2004), Segal (2003), Bern-

stein and Winter (2012), Halac, Kremer, and Winter (2019), Halac, Lipnowski, and Rap-

poport (2020), Moriya and Yamashita (2020), Chan (2022), Camboni and Porcellacchia

(2022), Chassang, Del Carpio, and Kapon (2022), Halac, Lipnowski, and Rappoport (2022).

This literature studies how a principal can use incentives, or both information design and in-

centives, to uniquely implement a desirable outcome. Closely related (and often overlapping)

is the literature on information design with adversarial equilibrium selection, for instance

recently in Bergemann and Morris (2019), Mathevet, Perego, and Taneva (2020), Ziegler

(2020), Sandmann (2021), Li, Song, and Zhao (2022), Hoshino (2022), Morris, Oyama, and

Takahashi (2022), and Inostroza and Pavan (2022).10 Key in both is the idea that to im-

plement a desirable action profile, the design tool is deployed to make it dominant for some

agents to take their assigned action, (iteratively) dominant for another group of agents to

take their assigned actions given the behavior of the first group, and so on. This logic features

centrally in the analysis of this paper. A novel aspect of this paper is the communication

allowed between agents, as well as results provided regarding linear environments and sim-

ple information structures. In the aforementioned literature, the principal seeks unique or

worst-case implementation under BNE (or rationalizability). In this paper instead, the prin-

cipal designs under a worst-case communication equilibrium criterion, a concept that allows

agents to communicate private information supplied to them by the principal. The stark dif-

ference between these solution concepts in the games considered here is illustrated in Section

3. I use a result in Morris, Oyama, and Takahashi (2022), which studies unique and small-

est BNE implementation in two action supermodular games, to prove that the principal’s

optimal value is independent of whether agents can communicate or not in supermodular

environments (Proposition 2).

The paper is also related to the literature on global games and robustness of equilibria

to incomplete information, as well as the investigation of cheap talk in that context. Early

papers include Rubinstein (1989), Carlsson and Van Damme (1993), Kajii and Morris (1997),

and a large literature has followed. The argument that, because of incentives to deceive other

agents, communication is impossible in an electronic mail game with negative spillovers

appears in Baliga and Morris (1998), and a closely related argument underlies the failure of

10For a survey of information design, with a comprehensive literature review of information design with
adversarial equilibrium selection, as well as adversarial mechanism selection, see Bergemann and Morris
(2019).
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communication in this paper.11

The paper is also more broadly related to recent theoretical work on reporting in crime

such as Chassang and Padró i Miquel (2019), Dannay (2019), Lee and Suen (2020), Pei and

Strulovici (2021) and Angelucci and Russo (2022). For instance, Pei and Strulovici (2021)

study the informativeness of accusations of wrong-doing against a potential criminal, when

accusers may have an incentive to lie and face retaliation if their accusations do not lead

to conviction. Chassang and Padró i Miquel (2019) study how a principal can incentivize

a monitor to blow the whistle on a misbehaving agent when the agent can retaliate against

the whistleblower.

2 Model

States. There is a finite set of states Θ, with arbitrary element denoted θ. The principal

and agents share a full support prior µ ∈ ∆(Θ). In the motivating environments, the state

is interpreted as the principal’s private evidence, and so I refer to it as the evidence state.

Agents. Agents i ∈ I = {1, 2} play a simultaneous-move game. Each agent i takes action

ai ∈ A ≡ {w, n}.12,13 Agent i’s payoff in state θ from action profile (ai, a−i) is denoted

ui(ai, a−i, θ), and an arbitrary action profile is denoted a = (ai)i∈I .

Assumption 1 (Negative Spillovers). For each i ∈ I, ai ∈ A, θ ∈ Θ,

ui(ai, n, θ)− ui(ai, w, θ) > 0.

This assumption guarantees that i prefers that −i not inform, independent of i’s choice.

Assumption 2 (Jointly Informing). For each i ∈ I, θ ∈ Θ,

ui(w,w, θ)− ui(n,w, θ) > 0.

This assumption guarantees that i prefers to inform if −i informs.

11Similar arguments also appear in Acharya and Ramsay (2013), which also analyzes cheap talk in other
types of information structures.

12w is for informing—or whistleblowing—and n is for not informing.
13Much of the literature deals with binary-action games, see for instance Morris et al. (2022), Halac et al.

(2020), and Halac et al. (2022).
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Information. An information structure is a pair (T, π) such that T = T1 × T2 for some

pair (T1, T2) with Ti countable, and π ∈ ∆(T ×Θ) such that for each θ ∈ Θ,∑
t∈T

π(t , θ) = µ(θ).

Prior to choosing an action, each agent privately observes ti ∈ Ti (henceforth called agent i’s

type), with t = (t1, t2) ∈ T drawn according to π. Denote an arbitrary information structure

by I. I write (ti, t−i) to denote the element of T in which i observes ti and −i observes t−i.

Communication Between Agents. A communication mechanism is a function

σ : T → ∆
(
AI
)

with the interpretation that each agent reports type mi ∈ Ti to a mediator, which then

sends recommendation ai ∈ A to agent i according to distribution σ(m1,m2). Given an

information structure I and communication mechanism σ, if truthully reporting one’s type

and obeying the recommendation is incentive compatible assuming that others do, σ is called

a communication equilibrium given I.14 Let C(I) denote the set of communication equilibria

given an information structure I.

Principal. The principal chooses the information structure, I, that determines agents’

private types. Let v(a, θ) denote the principal’s value in state θ for action profile a.

Assumption 3. For each θ ∈ Θ, a ∈ AI ,

v((w,w), θ) ≥ v(a, θ) ≥ v((n, n), θ).

This assumption ensures that in each state, the principal prefers more agents inform. The

principal’s problem is:

V ∗ ≡ sup
I

inf
σ∈C(I)

Eσ,I (v(a, θ))

I will also call this the principal’s problem with group communication.15

It is useful to define another problem in which agents are not allowed to communicate.

Let BNE(I) be the set of BNE in the game induced by information structure I. Then, the
14For a revelation principle justifying the restriction to such mechanisms, see Myerson (1982).
15All results remain true if rather than taking infimum over equilibria, I take infimum over equilibria that

are Pareto efficient for agents.
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principal’s problem without group communication is

V 0 ≡ sup
I

inf
σ∈BNE(I)

Eσ,I (v(a, θ)) .

An information structure I is called communication-proof if:

inf
σ∈BNE(I)

Eσ,I (v(a, θ)) = inf
σ∈C(I)

Eσ,I (v(a, θ))

Remark 1. Observe that by Assumption 2, both agents choosing w (i.e., informing) is always

a BNE. Hence, if the principal could choose her preferred equilibrium, information design

would be unnecessary.

Microfoundation. To provide intuition for the model, consider the following microfoun-

dation: Θ ⊂ (0, 1) and θ, the evidence state, is the likelihood that the principal can prove

and stop misbehavior without either agent informing.16 Suppose that the principal can prove

and stop misbehavior with certainty if at least one agent informs. The principal’s value is

the likelihood of proving and stopping misbehavior in each state.

Let gi > 0 be agent i’s profit from misbehavior when neither agent informs and the

principal is unable to prove misbehavior. Let ℓi > 0 be agent i’s punishment if neither agent

informs but the principal is able to prove misbehavior. Suppose that if agent−i informs while

i does not, then i receives the full punishment, ℓi, while −i receives a reduced punishment

ℓ−i < ℓ−i. Further, suppose that if both agents inform, each agent i has a chance pi ∈ (0, 1)

to be punished at the reduced level, ℓi, and chance 1− pi to be punished at the full level, ℓi.

Agent i’s payoffs are then given by,

n w

n gi(1− θ)− ℓiθ −ℓi

w −ℓi −piℓi − (1− pi)ℓi

where i is the row player and −i the column player.

Under this parameterization, the assumptions of the model are satisfied: the principal

prefers (w,w) to (n, n) (and is indifferent as long as at least one agent informs), w is a strict

16This is a reduction of the private evidence the principal possesses to a single number, the probability of
conviction given that evidence. Implicitly, I assume that any collection of evidence the principal has that
leads to the same probability of conviction enters payoffs in the same way (and so can be combined into a
single evidence state).
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best-response to w for each agent i (Assumption 2), and whatever is i’s action, i’s payoff is

strictly higher if −i chooses n (Assumption 1). Observe that in this setting, preferences are

affine functions of θ for both agents and the principal; I return to this special but natural

case in Section 7.

3 Example

Consider the following setting. Nature flips two fair coins, coin 1 and coin 2. Each coin can

come up heads (H) or tails (T), so Θ = {HH,TT,HT, TH}. Payoffs are:

n w
n x, x −2, 1

w 1,−2 0, 0

where x = −1 if θ = HH and x = 2 otherwise. In Appendix D, I show that with public

information design only, the principal cannot achieve first best. Below, I first demonstrate an

information structure which does achieve first best in the principal’s problem without group

communication, but performs poorly with group communication. Then, I demonstrate a

simple communication-proof information structure which achieves first best in the principal’s

problem with group communication.

3.1 A Private Information Structure

Consider the following information structure: the principal privately shows coin 1 to agent

1 and coin 2 to agent 2. Say that agent i has type H (T ) if he observes that coin i comes

up H (T ).

Without communication. Without communication, the unique BNE is for both agents

to choose w. Assuming that −i chooses n, if i of type H chooses w then he receives payoff

1, while if he chooses n he receives 2(1
2
)− 1(1

2
) = 1

2
; so, w is strictly preferred to n. All other

distributions of −i’s action preserve this strict preference, so that an agent of type H always

chooses w. For agent i of type T , the payoff to choosing n is 0, under the assumptions that

−i of type H chooses w and that −i of type T chooses n. The payoff to choosing w under

the same assumptions is 1
2
. As a result, w is strictly preferred over n for an agent of type T ,

given that −i of type H chooses w and −i of type T chooses n. Any other distribution of

−i’s actions consistent with −i of type H choosing w preserves this strict preference for w.
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The unique BNE is therefore (w,w), and the principal’s value under this information

structure is 1
4

∑
θ∈Θ

v((w,w), θ), the highest possible.

With communication. Consider now a communication mechanism, σ, that elicits mes-

sages mi ∈ {H,T} from each agent and recommends the action profile that maximizes the

total payoff: if mi = H for each i ∈ I, the recommendation is w to both agents and otherwise

the recommendation is n to both agents.

If agent i is type T , then reporting T guarantees the highest possible payoff (assuming

−i obeys), so truth-telling and obedience are satisfied. If i is type H, then conditional

on truthfully reporting, obeying is optimal; obeying recommendation n leads to payoff 2

while disobeying leads to payoff 1, and obeying recommendation w leads to payoff 0 while

disoebying leads to payoff−2. If i is typeH and he misreports T , he receives recommendation

n. If he obeys and chooses n, his payoff is 1
2
(2) − 1

2
(1) = 1

2
. If he disobeys and chooses w,

his payoff is 1, so the only relevant deviation is the double deviation of misreporting T and

choosing w (leading to payoff 1). But, by reporting truthfully and obeying, he receives
1
2
(2) + 1

2
(0) = 1, so truth-telling and obeying is a best-response for an agent of type H (to

truth-telling and obedience by his partner).

In this case, the principal’s payoff is

1

4
v((w,w), HH) +

∑
θ∈Θ\{HH}

1

4
v((n, n), θ).

This is the same payoff the principal would achieve if she had simply revealed both coins to

both agents, i.e., publicly communicated all of her information.

3.2 Communication-Proof Private Information Design

I now provide an information structure that implements the principal’s first best outcome

(both agents always choose w) in the unique communication equilibrium outcome.

Suppose that the principal shows agent 1 coin 1, but shows agent 2 nothing. Again, I

refer to agent 1 as type H (T ) if coin 1 comes up H (T ). By the same argument given in

Section 3.1, w is a strict best-response for agent 1 of type H, for any belief about agent 2’s

action. Consider agent 2’s incentives. From the argument in Section 3.1, even if agent 2

could observe that coin 2 is T (the most optimistic he can be about coin 2), w is a strict

best-response for any belief about agent 1’s choice consistent with agent 1 of type H choosing

13



w. As a result, agent 2 must choose w in any BNE. Finally, since agent 2 chooses w with

certainty, Assumption 2 implies agent 1 of type T must choose w. As a result, the unique

BNE is (w,w).

This information structure is communication-proof. To see why, fix an arbitrary com-

munication equilibrium. Without communication amongst agents, it is strictly dominant for

agent 1 of type H to choose w, and so the only way agent 1 of type H would choose n is

if his belief about coin 2 changed after a recommendation from the communication mecha-

nism. But agent 2 has no information about coin 2, and so agent 1’s belief about the state

after observing the recommendation from the communication mechanism cannot change. As

a result, to maintain obedience, the communication equilibrium must recommend w with

probability 1 to agent 1 who reports H.

Observe next that if agent 2 is recommended to choose n with positive probability, it

must be that the communication equilibrium recommends n to agent 2 more often after

agent 1 reports H than T . To see why, recall that agents strictly prefer their partner choose

n over w (Assumption 1). As a result, truth-telling by agent 1 of type H requires that

agent 2 is recommended to choose n with (weakly) higher probability after agent 1 reports

H than T , otherwise it would be profitable for agent 1 of type H to deviate to reporting

T , inducing a greater likelihood that agent 2 chooses n. As a result, when agent 2 observes

recommendation n, agent 2’s belief that agent 1 is type H (weakly) increases. But since

absent the recommendation it would be a strict best-response for agent 2 to choose w for

any belief consistent with agent 1 of type H choosing w, the recommendation to agent 2 to

choose n cannot be obedient. To maintain obedience then, the communication equilibrium

must recommend w to agent 2 with probability 1.

Finally, agent 1 of type T knows that agent 2 is being recommended w with probability

1. To maintain obedience, agent 1 of type T must therefore receive recommendation w with

probability 1. Any communication equilibrium therefore recommends w to all agents with

probability 1.

Using the information structure described here, the principal is able to implement the

first best using a communication-proof information structure (hence improving over public

communication).
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4 Information Structures: No Communication

In this section, I define a class of information structures, unraveling information structures,

and describe their main attractive property without communication: the unique equilibrium

outcome under an unraveling information structure is (w,w). I then define partially unrav-

eling information structures, which have similar properties but allow for some probability of

(n, n). As I show in Section 6, under the additional assumption of supermodular payoffs, the

principal loses no value restricting to partially unraveling information structures satisfying

an additional property guaranteeing communication-proofness (described in Section 5).

For any information structure (T, π), let πi denote the marginal distribution of π along

dimension i (i.e., the marginal distribution of agent i’s type). Fix an information structure

(T, π), an agent i ∈ I and a type t ∈ supp (πi) ⊆ Ti. Action a ∈ A is an interim strict

best-response (BR) for agent i given belief β ∈ ∆(T−i × A) over −i’s action if for each

a′ ∈ A,

Eπ,β (ui(a, a−i, θ)|ti = t) > Eπ,β (ui(a
′, a−i, θ)|ti = t)

where Eπ,β(.|ti = t) is the conditional expectation given ti = t and (t−i, a−i) ∼ β. In words,

an interim strict-BR is a strict-BR if the solution concept for the agents’ game were BNE

rather than communication equilibrium.

Given an information structure (T, π), a ranking function is a pair of functions λ =

(λ1, λ2) with λi : Ti → N ∪ {∞}, such that λi(ti) ̸= λ−i(t−i) for any (t1, t2) ∈ supp (π)

whenever max
i∈I

{λi(ti)} < ∞. Call λi(ti) the λ-rank of type ti. Finally, for any i ∈ I and type

t ∈ Ti, let

Φi(t, λ) ≡
{
β ∈ ∆(T−i × A)

∣∣∣∣β(t′, n) = 0 ∀t′ ∈ T−i s.t. (t, t
′) ∈ supp (π) and λ−i(t

′) < λi(t)

}
.

In words, Φi(t, λ) is the set of beliefs i of type t can hold about −i’s action such that if −i

has a type with a smaller λ-rank than i’s type, then −i chooses w.

Definition 1. An information structure (T, π) is a unraveling information structure

if there exists a ranking function λ such that λi(Ti) ⊆ N for each i ∈ I, and for any i ∈ I

and ti ∈ Ti, w is an interim strict-BR for any belief β ∈ Φi(ti, λ) about −i’s action.

A function λ satisfying the conditions in the definition is called admissible with respect

to (T, π). Note that admissible ranking functions cannot take value ∞—once I introduce

partially unraveling information structures, the role of a λ-rank of ∞ will become clear. The

key property of unraveling information structures is that they uniquely implement (w,w).
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Lemma 1. Any unraveling information structure implements (w,w) as the unique BNE.

Unsurprisingly, unraveling information structures may not exist. For instance, if w is domi-

nant with only small probability then for some payoff structures the principal will be unable

to implement (w,w) as the unique BNE. Therefore, to solve the principal’s problem, it is

necessary to study a larger class of information structures, partially unraveling information

structures. Partially unraveling information structures can be described by a two-step pro-

cedure: the principal sends a binary public signal, after one of the public signals agents face

an unraveling information structure (hence (w,w) is the unique BNE), and after the other

public signal (n, n) is a BNE (and hence is the principal’s worst BNE).

Given an information structure (T, π) and S ⊂ T , let πS(.) denote the distribution of

types t conditional on t ∈ S, and let µS denote the distribution of θ conditional on t ∈ S.

Definition 2. An information structure (T, π) is a partially unraveling information

structure if

• Ti can be partitioned into disjoint sets T̃i and {∞}

• If π(t) > 0, then t ∈ T̃ or t = (∞,∞), where T̃ = T̃1 × T̃2

• (T̃ , πT̃ ) is an unraveling information structure given prior µT̃ over Θ

• If π(∞,∞) > 0, n is an interim BR for ti = ∞ given belief that t−i = ∞ chooses n.

In words, the second requirement states that there is 0 probability that one agent’s type is

∞ while another agent’s type is not ∞. The third requirement states that on T̃ , agents face

an unraveling information structure. The fourth requirement is that if there is a positive

probability that both types are ∞ (under π), then n is a best-response for an agent with

type ∞ given the belief that −i with t−i = ∞ chooses n, or equivalently there exists a BNE

in which ti = ∞ chooses n for each i ∈ I.17

The difference from an unraveling information structure is that in a partially unraveling

information structure, there may be positive probability types who choose n (in the prin-

cipal’s worst BNE), while in an unraveling information structure all types choose w in the

unique BNE. Any ranking function λ that is an admissible ranking function when restricted

to (T̃ , πT̃ ) and has λi(∞) = ∞ for each i is called admissible.18

Lemma 2. Fix a partially unraveling information structure, (T, π). For each i ∈ I, in the

principal’s worst BNE, type ti ∈ Ti chooses w if ti ̸= ∞ and n if ti = ∞.
17The equivalence follows from the second requirement: if π(∞,∞) > 0, then if ti = ∞, i believes t−i = ∞

w.p. 1.
18Recycling the term admissible is convenient, though it represents a slight abuse of terminology.
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5 Information Structures: With Communication

The information structure in the example in Section 3.1, in which the principal shows each

agent one coin, is an unraveling information structure. For instance, let λ1(H) = 1, λ2(H) =

2, λ1(T ) = 3 and λ2(T ) = 4. Then, λ is an admissible ranking function. But, I have shown

that communication ruins the principal’s value. Observe that agent 1 with type H (λ-rank

1) faces two types of agent 2 with larger λ-ranks, both H (λ-rank 2) and T (λ-rank 4).

Indeed, in the information structure of the two coin example in Section 3.1, any admissible

ranking function λ will have this property for at least one agent. In this section, I show

that unraveling information structures are communication-proof if they satisfy an additional

restriction that rules out this possibility.

Recall that for any information structure (T, π), πi denotes the marginal distribution of

agent i’s type. For any information structure (T, π), let πi
ti
denote the distribution of −i’s

type, t−i, conditional on i having type ti ∈ supp (πi) ⊂ Ti.

Fix a ranking function λ and for any ti ∈ supp (πi), let

Loweri(ti, λ) ≡ supp (πi
ti
) ∩
{
t−i ∈ T−i

∣∣∣∣λ−i(t−i) > λi(ti)

}
.

and

Upperi(ti, λ) ≡ supp (πi
ti
) ∩
{
t−i ∈ T−i

∣∣∣∣λ−i(t−i) < λi(ti)

}
.

Lower(ti, λ) is the set of types t−i with λ-rank larger than the λ-rank of ti. Upper(ti, λ) is

the set of types t−i with λ-rank smaller than the λ-rank of ti. When it is clear, I suppress

the dependence of Lower(ti, λ) and Upper(ti, λ) on λ.

Definition 3. Fix a partially unraveling information structure (T, π). An admissible ranking

function λ is lower-rank unique if for any ti ∈ supp (πi),

|Loweri(ti, λ)| ≤ 1

and is upper-rank unique if for any ti ∈ supp (πi),

|Upperi(ti, λ)| ≤ 1

and is rank unique if it is both upper and lower-rank unique. The information structure

(T, π) is lower-rank unique (upper-rank unique, rank unique) if there exists an admissible
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ranking function that is lower-rank unique (upper-rank unique, rank unique).

An unraveling information structure that is both upper and lower-rank unique is a version

of an electronic mail game information structure (Rubinstein, 1989): each type ti believes

that there is at most one type of −i with a lower λ-rank and at most one type of −i

with a higher λ-rank. As I show in Proposition 1 below, lower-rank uniqueness is sufficient

for communication-proofness of a partially unraveling information structure. In Section 6,

partially unraveling information structures satisfying both upper and lower-rank uniqueness

are shown to be sufficient to implement the principal’s optimal value.19

I provide intuition for why lower-rank unique unraveling information structures are

communication-proof—afterwards, I comment on how this intuition this can be easily ap-

plied to show the same for partially unraveling information structure. Fix any lower-rank

unique unraveling information structure (T, π) and corresponding lower-rank unique admis-

sible ranking function λ.

First, consider an agent i of type ti with the smallest λ-rank, i.e., an agent for whom

λi(ti) = min
i∈I,ti∈supp (Ti)

{λi(ti)}. The definition of an unraveling information structure implies

that, if the group could not communicate, this type of agent chooses w for any belief about

his partner’s action. As a result, the only way to convince this type of agent not to choose

w is to change his belief about θ. But under lower-rank uniqueness, he is certain of his

partner’s type, and as a result no message he receives in a communication equilibrium with

positive probability can change his belief about θ. Hence, an agent with the smallest possible

λ-rank must be recommended w with certainty in any communication equilibrium.

The argument for larger λ-ranks proceeds by induction. Suppose that in any commu-

nication equilibrium, agents with λ-rank strictly smaller than m are recommended w with

certainty. Then, I claim there can be no communication equilibrium in which ti with λ-rank

m is recommended n with positive probability. To understand why, fix any ti with λ-rank

m and first observe that for any types t−i ∈ Upperi(ti), lower-rank uniqueness guarantees

that Lower−i(t−i) = {ti}. The inductive hypothesis implies that any type t−i ∈ Upperi(ti)

believes ti is the only type in supp (π−i
t−i

) that may choose n in equilibrium. Assumption

1 implies that t−i would deviate from truth-telling if an alternative report convinced ti to

choose n with higher probability. To ensure truth-telling then, all reports by −i of types

t−i ∈ Upperi(ti) must lead to the same probability that ti chooses n. The key implica-

19However, it may be that in other settings, upper-rank uniqueness is restrictive, and the principal may
prefer to use information structures in which agent i believes there are multiple possible types of −i with
smaller λ-rank. For instance, when the principal is able to make allocations, or if the agents can side-contract,
it may be optimal to violate upper-rank uniqueness.
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tion of this is that upon observing recommendation n, i’s belief about t−i conditional on

t−i ∈ Upperi(ti) is unchanged.

Similarly, observe that by lower-rank uniqueness, Lower(ti) has at most one element, say

t−i.
20 Any type t−i ∈ Upperi(ti) can misreport t−i and so, to ensure truth-telling of types

t−i ∈ Upperi(ti), reporting any t−i ∈ Upperi(ti) must lead to a weakly higher likelihood

that ti chooses n than reporting t−i. The key implication of this is that upon observing

recommendation n, i’s belief that t−i = t−i must decrease or, equivalently, i’s belief that

t−i ∈ Upperi(ti) must increase.

From the above observations, I argue that no communication equilibrium can recommend

n to type ti with positive probability. Suppose towards contradiction that ti is recommended

n with positive probability. The definition of an unraveling information structure and the

inductive hypothesis imply that, if i’s belief about −i’s type does not change after observ-

ing recommendation n, only w is an obedient recommendation to ti. Then to convince ti

to obey recommendation n, one of the following must happen to i after observing the rec-

ommendation: (a) his belief that t−i ∈ Upperi(ti) (and hence that −i necessarily chooses

w by the inductive hypothesis) strictly decreases, or (b) his belief about θ conditional on

t−i ∈ Upperi(ti) must change in a way to make w less attractive. But as I have argued, after

observing recommendation n, (a) ti’s belief that t−i ∈ Upperi(ti) must weakly increase, and

(b) ti’s belief about t−i conditional on t−i ∈ Upperi(ti) must not change, and hence ti’s belief

about θ conditional on t−i ∈ Upperi(ti) must not change. As a result, ti can only become

more pessimistic about n after receiving recommendation n, relative to the interim stage

(i.e., after learning type but before receiving recommendation n), and so violates obedience

by choosing w. Hence, no communication equilibrium can involve a recommendation to any

type of any agent to choose n with positive probability.

For a partially unraveling information structure (T, π), if ti ̸= ∞ for each i, then the

intuition for communication-proofness is exactly the same as for unraveling information

structures, and if t = (∞,∞), then both agents choose (n, n) in the principal’s worst BNE

and communication equilibrium. By the definition of a partially unraveling information

structure, these are the only two possibilities.

Proposition 1. Any lower-rank unique partially unraveling information structure, (T, π), is

communication-proof, and the principal’s worst BNE outcome is identical to the principal’s

worst communication equilibrium outcome.

20If Lower(ti, λ) is empty, the result is immediate: the inductive hypothesis implies that −i chooses w
with certainty, so ti must be recommended w with certainty.
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Note that if (T, π) is an unraveling information structure, the result implies that (w,w) is

the unique and hence principal’s worst communication equilibrium.

Remark 2. Partially unraveling information structures have the perfect coordination

property in the principal’s worst communication equilibrium: either both agents choose w or

both agents choose n.

6 Optimality under Supermodularity

In this section, I show that under the additional assumption that the game played by the

agents is supermodular in each state, the principal’s optimal value can be approximated

arbitrarily well by rank unique partially unraveling information structures.

Agents’ payoffs are supermodular if for all θ ∈ Θ and i ∈ I,

ui(w,w, θ)− ui(n,w, θ) ≥ ui(w, n, θ)− ui(n, n, θ)

In words, the difference in payoffs between choosing w and choosing n is larger when one’s

partner chooses w than when one’s partner chooses n.21

Definition 4. A set of information structures, B, implements V ∗ if

V ∗ = sup
I∈B

inf
σ∈C(I)

Eσ,I(v(a, θ))

and implements V 0 if

V 0 = sup
I∈B

inf
σ∈BNE(I)

Eσ,I(v(a, θ)).

Proposition 2. Suppose that agents’ payoffs are supermodular. The principal’s optimal

value with group communication is the same as without group communication, i.e.,

V ∗ = V 0.

The set of rank unique partially unraveling information structures implements V ∗ and V 0.

21Whenever (n, n) is an equilibrium, supermodularity is a consequence of Assumption 2: ui(w,w, θ) −
ui(n,w, θ) > 0 ≥ ui(w, n, θ)−ui(n, n, θ). But, if w is a dominant strategy for a given θ, then supermodularity
may fail, and so must be imposed as an additional assumption.
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The proof is given in the appendix and follows by combining Morris et al. (2022)’s Theorem

1 with Proposition 1, and arguing that the principal can restrict without loss of value to

information structures that have the perfect coordination property in the principal’s worst

equilibrium. It is useful here to recall the characterization in Morris et al. (2022)’s Theorem

1. To facilitate the explanation, suppose there is some state, θ̂, such that informing is strictly

dominant for both agents at θ̂, and in no other state is informing strictly dominant. A few

preliminary definitions are required.

A outcome is an element ν ∈ ∆(AI × Θ), and is consistent if
∑

a∈AI

ν(a, θ) = µ(θ) for

each θ ∈ Θ, i.e., it has marginal over states equal to the prior over states. An outcome ν

is implemented by an information structure if it is the principal’s worst BNE under that

information structure. Define Γ ≡ {∅, 1, 2, 12, 21} and Γi ≡ Γ\{−i, ∅}. Think of each γ ∈ Γ

as representing the set of agents who will choose w, and the order of those agents in γ as

a ranking; if i comes before j in γ ∈ Γ, then i is said to be ranked higher than j. For any

γ ∈ Γ, define

a−i(γ) ≡

w if − i is ranked higher than i in γ (or i is not in γ while − i is)

n otherwise

An ordered outcome is a distribution νΓ ∈ ∆(Γ×Θ), and satisfies sequential obedience if∑
γ∈Γi,θ∈Θ

νΓ(γ, θ)(ui(w, a−i(γ), θ)− ui(n, a−i(γ), θ)) > 0

for any i with vΓ(Γi ×Θ) > 0. An outcome ν is n-obedient if∑
θ∈Θ,a−i∈A

(ui(n, a−i, θ)− u(w, a−i, θ))ν((n, a−i), θ) ≥ 0.

Finally, an ordered outcome νΓ implements outcome ν if

ν((w,w), θ) = νΓ(12, θ) + νΓ(21, θ), ν((n, n), θ) = νΓ(∅, θ)

ν((w, n), θ) = νΓ(1, θ), ν((n,w), θ) = νΓ(2, θ)

Consider the set of outcomes ν such that ν((w,w), θ̂) > 0. Then, under the assumptions I

have made, an immediate implication of Morris et al. (2022)’s Theorem 1 is that an outcome

ν is implementable as the principal’s worst BNE for some information structure if and only if
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ν is n-obedient, consistent, and there exists a sequentially obedient ordered outcome νΓ that

implements ν. I describe now an information structure that can be used to generate such

an outcome ν as the principal’s worst BNE. Fix a sequentially obedient ordered outcome

νΓ that implements ν. Since ν((w,w), θ̂) > 0, νΓ(12, θ̂) + νΓ(21, θ̂) > 0. Suppose then that

νΓ(12, θ̂) > 0. Set Ti = {0, 1, 2, ...} ∪ {∞}. Fix η, ϵ > 0 s.t. η << ϵ < νΓ(12, θ̂). Set

π(t , θ) =



η(1− η)m−1 (νΓ(12, θ)− 111θ=θ̂ϵ) if t = (n, n+ 1) and m ≥ 1

η(1− η)m−1νΓ(21, θ) if t = (n+ 1, n) and m ≥ 1

η(1− η)m−1νΓ(1, θ) if t = (n,∞) and m ≥ 1

η(1− η)m−1νΓ(2, θ) if t = (∞, n) and m ≥ 1

νΓ(∅, θ) if t = (∞,∞)

111θ=θ̂
ϵ
2

if t = (0, 1)

111θ=θ̂
ϵ
2

if t = (1, 0)

For ϵ and η sufficiently small, sequential obedience ensures that any type ti < ∞ chooses w

in any equilibrium. To see why, observe that type ti = 0 knows θ = θ̂ and hence it is strictly

dominant to inform. For ϵ sufficiently large relative to η, type ti = 1 believes it is very

likely that θ = θ̂ and so it is also strictly dominant to inform. For type ti = 2 and for η, ϵ

sufficiently small, sequential obedience ensures that it is optimal to inform as long as ti = 1

informs, which he does. Proceeding inductively through the list of finite types shows that

in any BNE, an agent with a finite type chooses to inform. Finally, n-obedience guarantees

that in the principal’s worst equilibrium, agents with type ∞ choose not to inform.

This information structure is not, in general, a partially unraveling information structure.

If t−i < ∞ but ti = ∞ with positive probability (i.e., if ν((w, n), θ) > 0 or ν((n,w), θ) > 0 ),

the principal’s worst BNE involves one agent choosing w while the other chooses n, a property

absent from partially unraveling information structures. However, a consequence of Assump-

tion 2 and the assumption that the principal prefers more informing is that the principal’s

value can always be (weakly) improved by modifying the information structure to reveal to

type ti = ∞ that t−i < ∞ (and therefore −i chooses w), which (all else equal) incentivizes i

to choose w as well. This additional revelation does not affect the actions of any other agents

in the resulting worst equilibrium, and does not harm the principal’s value. As a result, it

is possible to restrict to outcomes ν such that ν((w, n), θ) = ν((n,w), θ) = 0. The informa-

tion structures implementing these outcomes are partially unraveling information structure
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satisfying lower-rank uniqueness and hence, are communication-proof by Proposition 1.22

Remark 3 (Linear Programming Formulation). A useful implication of this characterization

is that the principal’s problem can be stated as a linear program: the principal chooses any

ordered outcome that satisfies sequential obedience (with weak inequality) and implements a

consistent outcome ν (n-obedience can be dropped, as it is necessarily satisfied at optimality),

and the principal’s objective for any ordered outcome is Eν (v(a, θ)). This linear program is

applied to the study of linear environments in Section 7.

7 Linear Environments

In this section, I specialize to environments in which evidence states are real numbers and

preferences are affine in the evidence state, and show that if w is dominant for both agents

in the highest evidence state, there exists a solution to the principal’s problem in which the

likelihood of informing is monotonically increasing in the evidence state. Affine preferences

are natural when the state, θ, is the probability that the principal’s evidence is strong enough

to prove misbehavior when neither agent informs.

An environment is called linear if Θ ⊂ R and v, ui are affine in θ. The starting point

for the analysis is the linear programming formulation of the principal’s problem in Morris

et al. (2022). An implication of Proposition 2 is that the linear programming formulation

remains valid, and can be further specialized using the second part of Proposition 2, stat-

ing that partially unraveling information structures—which satisfy the perfect coordination

property—implement the principal’s value. With this in hand, the monotonic characteriza-

tion of an optimal policy below is proved by examining the dual of the linear program and

applying complementary slackness. The proof is given in Appendix B.

Recall, a consistent outcome is a distribution ν ∈ ∆(AI × Θ) such that the marginal of

θ equals the prior µ. An outcome ν is called optimal if (i) V ∗ = Eν (v(a, θ)) and (ii) there

exists a sequence (νm)m∈N such that νm → ν, and for each m, νm is the outcome induced by

the principal’s worst communication equilibrium under some information structure. Define

θ ≡ max{Θ} and θ ≡ min{Θ}.23 Finally, say that an action a ∈ A is dominant at θ ∈ Θ if

ui(a, a−i, θ) ≥ ui(a
′, a−i, θ)

22They are also upper-rank unique and hence, rank unique.
23Both exist because Θ is finite.
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for any a′, a−i ∈ A.

Proposition 3. Fix any linear environment in which agents’ payoffs are supermodular and

w is dominant for each i ∈ I at θ. Then, there exists θ∗ ∈ Θ and and an optimal outcome

ν ∈ ∆(AI ×Θ) satisfying

ν((w,w), θ) =

µ(θ) θ ∈
(
θ∗, θ

]
0 θ ∈ [θ, θ∗)

ν((n, n), θ) = µ(θ)− ν((w,w), θ)

ν((n,w), θ) = ν((w, n), θ) = 0.

In the settings motivating this paper, where θ is the likelihood that the principal can prove

misbehavior without either agent informing, a natural case is when each agent’s preference

for w is increasing in θ, and the principal’s preference for w is decreasing in θ. That is, when

agents face a greater likelihood that the principal will be able to prove their misbheavior,

they have the strongest incentives to inform, and when the principal faces a greater likelihood

of being able to prove misbehavior without an informant, her value for an informant is lower.

Indeed, the microfoundation of the model offered in Section 2 satisfies these conditions. In

this case, the result implies that, unless the principal can achieve her first best, it is optimal

not to induce agents to inform when θ is small, where the principal’s value for an informant

is largest but the cost of providing incentives to inform is also largest.

7.1 Comparative Statics

It is convenient for comparative statics to define gi(a), ℓi(a) : A
I → R such that

ui(a, θ) = gi(a)(1− θ) + ℓi(a)θ (1)

for each a ∈ AI , θ ∈ Θ, i ∈ I.

Let G denote any linear environment, and let V ∗(G) be the principal’s value in this

environment. Denote by ui(a, θ;G) agent i’s payoff in this environment, and gi(a;G) and

ℓi(a;G) the coefficients on agent i’s payoff, as defined in equation (1).

It is clear that increasing the payoffs when neither agent informs in every state, holding

all else fixed, has an unambiguously negative effect on the principal’s optimal value. The

following result formalizes this observation.
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Proposition 4. Fix any environments G and G ′. Suppose that ui(a, θ;G) = ui(a, θ;G ′) for

each i ∈ I, θ ∈ Θ, and a ∈ AI with a ̸= (n, n). Then,

ui(n, n, θ;G) ≥ ui(n, n, θ;G ′) for each i ∈ I, θ ∈ Θ =⇒ V ∗(G ′) ≥ V ∗(G).

In the remainder of the section, I study another comparative static; increasing the asymmetry

between firms.

Let G be a linear symmetric environment—a linear environment with symmetric payoffs

for the agents. Let Gϵ,δ denote the perturbed environment that is identical to G, except that

g1(n, n;Gϵ,δ) = g1(n, n;G)− ϵ (2)

g2(n, n;Gϵ,δ) = g2(n, n;G) + δ (3)

Observe that under perturbation Gϵ,ϵ for any ϵ ≥ 0, the total payoff of the group is unchanged

i.e.,
∑
i∈I

ui(a, θ;G) =
∑
i∈I

ui(a, θ;Gϵ,ϵ), and only the distribution of payoffs when both choose

n is affected. Say that a perturbation is admissible if it has supermodular payoffs for the

agents, and w is dominant for both agents at θ = θ. After stating the comparative static

in the following proposition, I interpret these perturbations using the microfoundation in

Section 2, in particular in the context of antitrust.

Proposition 5. Fix a symmetric linear environment, G, in which payoffs are supermodular

for the agents, and w is dominant for both agents at θ. Then, for any triple of admissible

perturbations Gϵ,ϵ, Gδ,δ and Gϵ,δ with ϵ, δ ∈ R+,

ϵ ≥ δ =⇒ V ∗(Gϵ,ϵ) ≥ V ∗(Gϵ,δ) ≥ V ∗(Gδ,δ) ≥ V ∗(G).

This result shows that more asymmetric environments are more susceptible to disruption

through information design, leading to a higher value for the principal, and, given the mono-

tonic characterization of an optimal policy in Proposition 3, a greater likelihood of informing.

Antitrust. In this section, I discuss the interpretation of comparative statics in the con-

text of antitrust, using the microfoundation in Section 2. Recall that in the microfoundation

described in Section 2, θ is interpreted as the probability that the principal can prove misbe-

havior without an informant, and ui((n, n), θ) = gi× (1−θ)− ℓi× (θ), where gi is interpreted

as agent i’s profit from misbehavior when neither agent informs and the principal cannot

prove misbehavior, while ℓi is interpreted as agent i’s punishment if the principal is able to
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prove misbehavior.

Most immediately in the context of cartels in antitrust, a decrease in cartel profits, gi,

for both agents, leads to an increase in the principal’s value, a consequence of Proposition

4. If, for instance, a new entrant reduces cartel profits or demand shrinks, the cartel is more

susceptible to breakdown through strategic information revelation by the principal. Such

market events can be thoughts of as “markers” and can be used by the regulator to direct

resources to the most susceptible cartels.

Next, consider the perturbation Gϵ,ϵ; such perturbations have the following interpretation:

in the event that both agents choose n and the principal fails to prove misbehavior, agent

1’s payoff increases by ϵ, and agent 2’s payoff decreases by ϵ. Proposition 5 implies that if

ϵ ≥ δ ≥ 0, the principal is better off in Gϵ,ϵ than in Gδ,δ, a more symmetric environment.

In the context of cartels in antitrust, market events can generate such asymmetries. To see

how, observe first that cartel punishments are a multiple of past illicit gains; as a result, if a

cartel is initially symmetric but an event occurs that affects the future profits of cartelization,

this change is not reflected in the payoffs when at least one firm applies to the regulator for

leniency (effectively ending the cartel). Recent market events therefore only affect payoffs if

neither firm informs, as required by the perturbation.

A number of events may trigger transfers of this form. For instance, cartels often operate

by splitting markets geographically, agreeing not to invade each other’s markets.24 If demand

in one market grows while demand in another shrinks, firms may face a situation similar to

that represented by the perturbation in Proposition 5—the firm with a growing market faces

a greater value from cartelization, while the firm with a shrinking market faces a smaller

value from cartelization. Alternatively, even though firms try not to poach each other’s

customers, a (possibly large) customer may switch from one firm to another; this transfer

can lead to an increase in the value of cartelization for one firm in the cartel and a decrease

for the other firm, of the form described in Proposition 5. Each of these examples is a special

case of a more general “marker” the regulator can use for allocating resources to strategic

information provision; any market-event that shifts potential future profits of cartelization.

In the examples described, firms could in principle re-allocate buyers or geographies

in such a way as to re-balance the cartel profits. However, bargaining problems have been

identified as a key obstacle for cartel success. For instance, in the cartel sample of Levenstein

and Suslow (2006), approximately one quarter of all cartels in the paper’s cartel sample ended

because of bargaining problems. As the paper states, “successful cartels have developed

24See for instance, the copper plumbing tubes cartel, and others described in Sugaya and Wolitzky (2018).
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organizational designs that allow the agreement to accommodate fluctuations in the external

environment without requiring costly renegotiations.” Cartels that are successful in this

regard are therefore also more immune to the regulator’s attempt to destroy the cartel with

information. In contrast, cartels that struggle to re-bargain after market-shifting events are

more susceptible to destruction through information provision by the regulator.

8 Simple Information Structures and Implementation

The information structures required to achieve the principal’s optimal value may involve

complex private communication with the agents. In this section, I propose a simple infor-

mation structure that only requires private communication by fully disclosing the state or

disclosing nothing.

Before defining the simple information structures I will investigate, I formally define a

public information structure. An information structure (T, π) is called public if whenever

π(ti, t−i) > 0 for some pair (ti, t−i) ∈ T , π(ti, t
′
−i) = 0 for any t′−i ̸= t−i. Any pair (P, πP )

with P countable and πP ∈ ∆(P ×Θ) induces a public information structure given by (T, π)

with T = P ×P and π((p, p′), θ) = 111p=p′π
P (p, θ). As a result, I refer to any such pair (P, πP )

as a public information structure.

Let Domi ⊂ Θ, be the set of states θ such that w is strictly dominant for i in state θ.

Definition 5. An information structure (T, π) is called simple discriminatory if

Ti = P ×
(
{∅} ∪Θi

)
for some set P , and there exists a function

i∗(.) : P → I

called the favored agent function, s.t. for any t = ((p, θ1), (p, θ2)) ∈ T , π(t) > 0 implies

θ−i∗(p) = ∅,

θ /∈ Θi∗(p) =⇒ θi∗(p) = ∅,

θ ∈ Θi∗(p) =⇒ θi∗(p) = θ

and for any t = ((p1, θ1), (p2, θ2)) ∈ T with p1 ̸= p2, π(t) = 0. The pair (P, πP ) with
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πP (p, θ) =
∑
t∈T

π((p, t1), (p, t2), θ) for each p ∈ P is called the public signal structure of

(T, π), and for each type ti = (p, θ), p is called the public signal of ti.

Each simple discriminatory information structure can be represented as the triple (P, πP , i∗)

consisting of public signal space P , distribution over public signal space πP , and favored

agent mapping i∗. Denote the set of all such triples by D.

A simple discriminatory information structure can be interpreted as the following two-

step procedure: the principal sends a public signal from P , and then privately reveals the

state to one agent, i∗(p), if it is a dominant strategy to inform in that state, and otherwise

reveals nothing.

Definition 6. A simple discriminatory information structure (P, πP , i∗) targets the agents

least (most) tempted to inform after public signal p ∈ P if,

Ep

(
ui∗(p)(w, n, θ)− ui∗(p)(n, n, θ)

)
> 0

=⇒ ( ⇐= ) Ep

(
u−i∗(p)(w, n, θ)− u−i∗(p)(n, n, θ)

)
> 0.

where Ep(·) is the conditional expectation given public signal p. Denote by least(p;P, πP )

the set of agents who are least tempted inform after p ∈ P.

A simple discriminatory information structure (P, πP , i∗) targets the agent least (most)

tempted to inform if i∗(p) ∈ least(p;P, πP ) ∀p ∈ P . Denote by least(P, πP ) the set

of favored agent functions i∗ with i∗(p) ∈ least(p;P, πP ) for each p ∈ P.

When clear, I suppress the dependence of least(p;P, πP ) on (P, πP ). If a simple discrim-

inatory information structure is an unraveling information structure, then it is lower-rank

unique and hence, is communication-proof. If it is not an unraveling information structure,

it must be because in the principal’s worst BNE, there is some p ∈ P such that any type

who observes p but does not observe the private signal revealing the state chooses n. In that

case, the principal’s worst communication equilibrium involves exactly the same outcome,

and hence, is communication-proof. A key benefit of simple discriminatory information

structures is that they require relatively simple private communication from the principal:

if evidence is verifiable, the principal need only reveal evidence.

Observe now that for any simple discriminatory information structure, if i∗(p) = i then

the principal’s worst BNE given public signal p is the same for any simple discriminatory

information structure in which i∗(p) = i. As a result, for any public signal (P, πP ), it is
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possible to define equilibrium objects after observation of signal realization p given a favored

agent mapping evaluated at p without any reference to the favored agent mapping elsewhere.

For any simple discriminatory information structure (P, πP , i∗), let

PL(P, πP , i∗) ≡
{
p ∈ P

∣∣∣∣ in any BNE, any type with public signal p chooses w

}
IL(p;P, πP ) ≡

{
i ∈ I

∣∣∣∣ ∃ (P, πP , i∗
)
∈ D such that i∗(p) = i and p ∈ PL(P, πP , i∗)

}
Thus, PL(P, πP , i∗) is the set of public signals after which (w,w) is the unique equilibrium

outcome in the simple discriminatory information structure (P, πP , i∗). IL(p, P, πP ) is the

set of all agents i such that there exists some simple discriminatory information structure in

which i∗(p) = i and (w,w) is the unique equilibrium outcome after public signal p.

Define the principal’s value for an information structure I as

V (I) ≡ inf
σ∈C(I)

Eσ,I (v(a, θ)) .

Let ai ∈ AI be defined by aii = w and ai−i = n.

Proposition 6. Fix any public information structure (P, πP ) and suppose that agents’ pay-

offs are supermodular. There exists an optimal simple discriminatory information structure

(P, πP , i∗) satisfying:

1. If IL(p;P, πp) ̸= ∅, i∗(p) ∈ IL(p;P, πp)

2. If IL(p;P, πp) = ∅, i∗(p) = argmax
i∈I

{ ∑
θ∈Θi

(v(ai, θ)− v((n, n), θ))P(θ|p)

}
where

P(θ|p) is the probability of state θ conditional on public signal p

3. The principal’s value is (weakly) larger under simple discriminatory information struc-

ture (P, πp, i∗) than under public information structure (P, πP ).

The existence of an optimal simple discriminatory information structure with public signal

(P, πP ) is immediate, as there are only finitely many. The existence of an optimal simple

discriminatory information structure with public signal (P, πP ) satisfying the first two re-

quirements is straightforward. If after a public signal p, privately informing some agent

leads both agents to choose w, then set i∗(p) to be any such agent (point 1). Otherwise, set

i∗(p) such that after public signal p, if only the type who observes the state chooses w, the
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principal’s value at that public signal is maximized. The final part of the proposition follows

from the next proposition, where I show that there always exists a simple discriminatory

information structure that improves over public information structure (P, πP ).

Proposition 7. Fix a public information structure (P, πp) and suppose that agents’ payoffs

are supermodular. Then, any simple discriminatory information structure (P, πp, i∗) with

i∗ ∈ least(P, πp) (weakly) improves the principal’s value over public information structure

(P, πp).

The result is not immediate since it may be that simple discriminatory information structures

involve strictly more information: in principle, this could lead to lower payoffs. Indeed,

choosing i∗(·) poorly can lead to strictly lower payoffs for the principal.

The intuition behind the proposition is the following. The principal’s worst equilibrium

after a public signal (and without any further private signals) is in pure strategies, and is

either (w,w) or (n, n), a consequence of Assumptions 2 and 3. If after some public signal

p, the principal’s worst equilibrium is (n, n), then this is the worst possible outcome, so no

further private information can make matters worse for the principal.

If after some public signal p, the principal’s worst equilibrium is (w,w), then there must

be some agent, say i, who strictly prefers w even if −i chooses n, otherwise (n, n) would be

an equilibrium. Then, least(p;P, πP ) is non-empty, since it at least contains −i. Then, set

i∗(p) = −i: agent i is left completely uninformed, and, since the information structure is

communication-proof, i still chooses w (a consequence of supermodularity), while Assump-

tion 2 implies that −i chooses w as well. Hence, the principal is made no worse off by the

private revelation.

Robustness to µ.

Define a public experiment to be a pair (P, (πθ)θ∈Θ) composed of a public signal space P

and a distribution over P for each θ ∈ Θ. The public information structure generated

by a public experiment (P, (πθ)θ∈Θ) and a prior µ is the pair (P, πP ), where πP (p, θ) =

µ(θ)×πθ(p). Given a favored agent function, i∗, and a public experiment (P, (πθ)θ∈Θ), define

a simple discriminatory experiment as the triple (P, (πθ)θ∈Θ, i
∗). The simple discriminatory

information structure generated by a simple discriminatory experiment (P, (πθ)θ∈Θ, i
∗) and

prior µ is the triple (P, πP , i∗), where πP (p, θ) = µ(θ) × πθ(p). Given a prior µ, define the

principal’s value for a public (simple discriminatory) experiment to be the principal’s value

for the public (simple discriminatory) information structure generated by the prior.
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Say that agent i is unambiguously least tempted if for all θ ∈ Θ,

ui(w, n, θ)− ui(n, n, θ) ≤ u−i(w, n, θ)− u−i(n, n, θ).

Then observe that i is least tempted to inform after any public signal in any public infor-

mation structure, i.e., i ∈ least(p;P, πP ) for any (P, πP ) and p ∈ P . An implication of

Proposition 7 is the following proposition.

Proposition 8. Suppose agents’ payoffs are supermodular. Fix any public experiment (P, (πθ)θ∈Θ)

and suppose that i ∈ I is unambiguously least tempted. The simple discriminatory experi-

ment (P, (πθ)θ∈Θ, i
∗) with i∗(p) = i for each p ∈ P (weakly) improves the principal’s value

over public experiment (P, (πθ)θ∈Θ) for any prior µ.

The result states that if some agent can be identified as having smaller incentives to inform

relative to his partner in each state, then any public experiment with any prior can be

improved by the simple discriminatory experiment that targets that agent.

8.1 Antitrust and Cartels

In this section, I discuss some of the issues involved in implementing these information

structures, in the context of antitrust leniency.

Commitment. To implement a simple discriminatory information structure, the regulator

needs to commit to two things: a public signal and releasing private information to only one

agent.

On the public signal, the problem is that, once the regulator commits to a signal that

informs cartel members that its evidence is strong, it will tempted to send that signal exces-

sively. Sauvagnat (2015) discusses microfoundations for commitment of the regulator to an

informative public signal. In particular, initiating an investigation is costly, and so serves as

a potentially credible signal of the regulator’s evidence—the investigation would be initiated,

and cost incurred, only if the regulator has sufficiently strong evidence or is sufficiently confi-

dent of the existence of a cartel. Transparency can facilitate the signaling value of initiating

an investigation if the regulator is forced to publish statistics about the share of initiated

investigations that result in successful prosecutions.

On private information, it may be that after some public signals, revealing the state

to one agent (say, agent 1) fails to create the contagion inherent in unraveling information
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structures; as a result, only the agent to whom the state was revealed, and who subsequently

believes that w is dominant, chooses w. The problem then is that if the regulator is meant

to leave player 2 uninformed (beyond the public signal), she may be tempted to reveal to

player 2 that θ ∈ Θ1 ∪ Θ2, which may spur player 2 to report when he otherwise may not

have.25 If player 2 anticipates this, interpreting no signal from the regulator as indication

that θ /∈ Θ1 ∪Θ2, then he and player 1 may be able to avoid informing when θ /∈ Θ1 ∪Θ2.

If the regulator’s communications to agents are observable to the courts, then one way to

create commitment is by creating a regulatory rule that for some fixed amount of time after

the regulator has communicated its evidence to agent 1, it is prohibited from communicating

with agent 2. If courts reduce fines when the regulator violates this rule, then it seems

possible for the regulator to make this commitment, especially if courts are observed to

enforce such reductions in fines when the regulator does violate the rule.

Another way to create some commitment is to implement a “first-in” rule that only the

first agent to inform is granted leniency, and thus committing the regulator to only extract

evidence voluntarily from the first reporting agent.26 In that case, if θ ∈ Θ1, the regulator is

indifferent about revealing this information to player 2, since the second agent who informs

is not granted any leniency and therefore provides no useful evidence to the regulator, so

commitment becomes unnecessary (though if θ ∈ Θ2 ∩Θ
C

1 , the temptation will remain). Of

course, a first-in rule may lead to losses if the additional evidence provided by the second-in

applicant would have turned a defeat into a victory in the case against the cartel, and so

whether such a first-in rule is ideal depends on specifics of the environment.27

For reasons outside the model—for instance, the regulator is unsure if θ ∈ Θ1—another

issue is that the regulator may be tempted, after revealing information to agent 1 and

observing that agent 1 does not apply for leniency, to reveal the same evidence to agent 2,

in the hopes that it spurs him to apply for leniency. This is somewhat less problematic;

as long there is a lag between the time agent 2 knows that evidence has been revealed to

agent 1 and the time the regulator reveals evidence to agent 2, then to observe evidence,

agent 2 must wait and potentially be preempted by agent 1, losing the benefits of being

first to the authority. For this, the regulatory rule prohibiting communication with agent 2

after communication with agent 1 for some fixed amount of time may be useful as well, to

25Recall Θi is the subset of states Θ for which w is strictly dominant for agent i.
26The largest benefit to betrayal is always conferred on the first one to inform, but in some instances of

antitrust leniency the second-in can also receive lenient treatment in exchange for evidence.
27Whether to restrict leniency to only the first-in applicant is a question that has been studied in the

leniency literature, with benefits and costs beyond those considered here.
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convince agent 2 that by the time the regulator communicates with him, agent 1 will have

had enough time to act.

Choosing i∗. To generate improving simple discriminatory information structures given a

public signal p, one needs to choose i∗(p) carefully. If (w,w) is the principal’s worst outcome

at signal p, there is guaranteed to be an agent, i, for whom w is a strict best-response even

if −i chooses n. Setting i∗(p) = −i preserves the principal’s worst case outcome as (w,w).

But how can one identify i∗(p), without fine payoff information? One possibility is to track

changes to the composition of an industry. A firm that shrinks is likely to have relatively

more to lose from being detected or informed on than a firm that grows: it has larger past

illicit gains but expects little in the future. As a result, if one firm shrinks while another

grows, leaving the recently shrunk firm (privately) uninformed appears to be a good choice.

8.2 The Mechanics of Implementation

In this section, I discuss two ways that an antitrust regulator could possibly implement a

private information policy such as the simple discriminatory information structures discussed

above.

Initial Investigations. To obtain authorization from a court to initiate an investigative

action against a possible cartel—e.g. an unannounced inspection—an antitrust authority

may only need to present evidence of suspicious market behavior (OECD, 2013). Alter-

natively, an antitrust authority may initiate an action after receiving information from a

third-party whistleblower. Even if the evidence the regulator has at this stage is not enough

to successfully prosecute a cartel, it may lead to an inspection and the collection of poten-

tially more serious hard evidence. In the context of the model, the initiation and continuance

of an investigation are public signals of the strength of the regulator’s evidence and suspi-

cion. Since investigating takes resources—inspections as well as continued investigations are

costly—they are credible signals of the antitrust authority’s belief that it can obtain a suc-

cessful conviction. To the extent that no cartel member knows what the regulator knows,

the strength of the evidence is private information of the regulator.

To implement a simple discriminatory information structure, the regulator must commit,

at some stage during the investigation, to privately releasing evidence it discovers to only one

of the cartel members. If, as discussed in the previous section, such commitment is possible,

the only thing left for the regulator to determine is which of the cartel members to target
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with information. As already described, the model provides a rationale for the informed

member to be the one who is least tempted to inform absent any private communication

from the principal.

Affirmative Amnesty. One environment in which an antitrust regulator can potentially

implement a simple discriminatory information structure is in the context of affirmative

amnesty, a practice of the Department of Justice. When a cartel is discovered, investigators

may find evidence of a second cartel.28 Affirmative amnesty refers to the practice of revealing

this evidence to one of the cartel members and offering them amnesty, in the hopes of inducing

one of them to inform. Since in these instances the regulator is already approaching cartel

members privately and providing them with evidence, implementing a simple discriminatory

information structure only requires the additional feature that the regulator make an ex-ante

commitment to reveal the evidence to only one cartel member (and commit to which cartel

member it will be).

9 Discussion

Principal-Worst Equilibrium. Instead of evaluating the principal’s payoff against her

worst communication equilibrium, one could evaluate against the principal’s worst commu-

nication equilibrium among the set of Pareto efficient equilibria for the agents. This does not

change results: partially unraveling information structures induce a principal worst equilib-

rium that is efficient for agents (among equilibria).

Supermodularity and Rationalizability. When the game agents play is supermodular,

the principal’s worst rationalizable outcome coincides with the principal’s worst BNE (Mil-

grom and Roberts (1990)). This result is applied in Morris et al. (2022), which I combine

with Proposition 1 to prove Proposition 2 in this paper.

In contrast, if the game is not supermodular, it is possible that the principal’s worst

rationalizable outcome and BNE do not coincide. An example in which the principal’s worst

rationalizable outcome and BNE do not coincide is given in Appendix E.29

28The likelihood is high; at least as of statistics published in 2006, around 50% (see
https://www.justice.gov/atr/speech/measuring-value-second-cooperation-corporate-plea-negotiations).

29Of course, it is easy to generate such examples without satisfying the payoff assumptions, i.e., Assump-
tions 1 and 2. The example in the appendix provides an example that satisfies the payoff assumptions.
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Bounded Rationality. A benefit of the simple discriminatory information structures con-

sidered in Section 8 is that they require relatively little sophisticated reasoning from the

agents to implement, unlike (in general) the information structures required to achieve the

principal’s optimal value. The motivating environments involve games between agents in

which the gains and losses from informing or being informed on are experienced infrequently,

and the sophisticated reasoning required to reach the outcomes generated by unraveling in-

formation structures through introspection in theory may be too demanding in practice.

Experimental evidence suggests, at least in static settings, that higher-order reasoning will

be severely limited—a potential problem even with the basic leniency policy in the eco-

nomics literature, which draws value from an unraveling argument (Motchenkova, 2004).

Experience may lead to more higher-order reasoning, but in the settings motivating this

paper—especially in the case of antitrust—many agents will be first time offenders. On the

other hand, the high stakes involved may strain the external validity of lab experiments, and

cartelists may engage in more higher-order.

10 Conclusion

In this paper, I studied the problem of a principal facing a group of misbehaving agents.

Each member of the group could inform on the group’s misbehavior, and the principal could

reveal information to the group in order to spur whistleblowing. Novel to this setting, I

allowed the group of misbehaving agents to communicate amongst themselves, after the

principal communicates with them, and showed that such communication is not harmful

to the principal’s value in supermodular environment. I studied linear environments, and

showed that under a dominance condition, there exists a solution to the principal’s problem

in which the likelihood of informing is monotonically increasing in the evidence state. I

then provided a simple information structure, requiring only public communication and full

disclosure of the evidence, that improves over public communication alone, and argued for

the feasibility of its implementation in practice.

A number of questions, on both theoretical and practical matters, have been left open.

First, what happens with more than two misbehaving agents? Partially unraveling infor-

mation structures naturally generalize, but their communication-proofness does not; except

in special cases, the techniques used to prove communication-proofness for two agents does

not generalize to more than two agents. In that case, does communication-proofness place

real restrictions on the principal’s value, or are there alternative information structures that
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can still implement the principal’s value without group communication? Second, what are

optimal information structures when agents can side-contract? It would be natural to allow

agents to re-balance the gains from misbehavior in order to make the group less suscep-

tible to the principal’s information revelation. In this case, information structures that

are communication-proof without side-contracting may no longer be with side-contracting.

Third, what happens if the principal can jointly design the payoff structure of the game as

well as the information agents have? With sufficiently generous rewards, any cartel can be

dismantled, but these rewards are costly, so a principal must balance the loss from rewards

and the operation of the cartel. Fourth, a natural extension would allow for more than two

actions—for instance, agents may be able to take action to further conceal their misbehavior.

In this case the regulator must take care not to inform agents if it will lead them not to

whistleblowing but to concealing their misbehavior. Finally, what happens if evidence ar-

rives slowly over time, as would be the case when investigating a cartel? Does the principal

slowly reveal information, or gather evidence for a long period of time before revealing, and

how are these questions affected by the principal’s ability to commit?
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Chassang, S. and G. Padró i Miquel (2019): “Crime, intimidation, and whistleblowing:

A theory of inference from unverifiable reports,” The Review of Economic Studies, 86,

2530–2553.

Dannay, G. (2019): “Information Design Against Petty Corruption,” Ph.D. thesis.

Gamba, A., G. Immordino, and S. Piccolo (2018): “Corruption, organized crime and

the bright side of subversion of law,” Journal of Public Economics, 159, 79–88.

Halac, M., I. Kremer, and E. Winter (2019): “Raising capital from heterogeneous

investors,” American Economic Review.

Halac, M., E. Lipnowski, and D. Rappoport (2020): “Rank Uncertainty in Organi-

zations,” Available at SSRN 3553935.

——— (2022): “Addressing Strategic Uncertainty with Incentives and Information,” in AEA

Papers and Proceedings, vol. 112, 431–37.

Harrington Jr, J. E. (2008): “Optimal corporate leniency programs,” The Journal of

Industrial Economics, 56, 215–246.

——— (2013): “Corporate leniency programs when firms have private information: the

push of prosecution and the pull of pre-emption,” The Journal of Industrial Economics,

61, 1–27.

37



Hoshino, T. (2022): “Multi-Agent Persuasion: Leveraging Strategic Uncertainty,” Inter-

national Economic Review, 63, 755–776.

Inostroza, N. and A. Pavan (2022): “Adversarial Coordination and Public Information

Design,” Working Paper.

Kajii, A. and S. Morris (1997): “The robustness of equilibria to incomplete information,”

Econometrica: Journal of the Econometric Society, 1283–1309.

Landeo, C. M. and K. E. Spier (2020): “Optimal law enforcement with ordered le-

niency,” The Journal of Law and Economics, 63, 71–111.

Lee, F. X. and W. Suen (2020): “Credibility of crime allegations,” American Economic

Journal: Microeconomics, 12, 220–59.

Levenstein, M. C. and V. Y. Suslow (2006): “What determines cartel success?” Jour-

nal of economic literature, 44, 43–95.

Li, F., Y. Song, and M. Zhao (2022): “Global manipulation by local obfuscation,”

Journal of Economic Theory, 105575.

Marvão, C. and G. Spagnolo (2018): “Cartels and leniency: Taking stock of what we

learnt,” in Handbook of Game Theory and Industrial Organization, Volume II, Edward

Elgar Publishing.

Mathevet, L., J. Perego, and I. Taneva (2020): “On information design in games,”

Journal of Political Economy, 128, 1370–1404.

Milgrom, P. and J. Roberts (1990): “Rationalizability, learning, and equilibrium in

games with strategic complementarities,” Econometrica: Journal of the Econometric So-

ciety, 1255–1277.

Miller, N. H. (2009): “Strategic leniency and cartel enforcement,” American Economic

Review, 99, 750–68.

Moriya, F. and T. Yamashita (2020): “Asymmetric-information allocation to avoid

coordination failure,” Journal of Economics & Management Strategy, 29, 173–186.

Morris, S., D. Oyama, and S. Takahashi (2022): “Implementation via information

design in binary-action supermodular games,” Available at SSRN 3697335.

38



Motchenkova, E. (2004): “Effects of leniency programs on cartel stability,” .

Motta, M. and M. Polo (2003): “Leniency programs and cartel prosecution,” Interna-

tional journal of industrial organization, 21, 347–379.

Myerson, R. B. (1982): “Optimal coordination mechanisms in generalized principal–agent

problems,” Journal of mathematical economics, 10, 67–81.

OECD (2013): “Ex officio cartel investigations and the use of screens to detect cartels,” .

Pei, H. and B. Strulovici (2021): “Crime Aggregation, Deterrence, and Witness Credi-

bility,” arXiv preprint arXiv:2009.06470.

Rubinstein, A. (1989): “The Electronic Mail Game: Strategic Behavior Under” Almost

Common Knowledge”,” The American Economic Review, 385–391.

Sandmann, C. (2021): “Recursive information design,” Tech. rep., Mimeo.

Sauvagnat, J. (2015): “Prosecution and leniency programs: the role of bluffing in opening

investigations,” The Journal of Industrial Economics, 63, 313–338.

Segal, I. (2003): “Coordination and discrimination in contracting with externalities: Divide

and conquer?” Journal of Economic Theory, 113, 147–181.

Spagnolo, G. (2000): “Optimal leniency programs,” FEEM Working Paper.

Sugaya, T. and A. Wolitzky (2018): “Maintaining privacy in cartels,” Journal of Po-

litical Economy, 126, 2569–2607.

Vallery, A. and C. Schell (2016): “AC-Treuhand: Substantial Fines for Facilitators of

Cartels,” Journal of European Competition Law & Practice, 7, 254–257.

Winter, E. (2004): “Incentives and discrimination,” American Economic Review, 94, 764–

773.

Ziegler, G. (2020): “Adversarial bilateral information design,” Tech. rep., Working paper.

39



A Proofs of Section 5

Proof of Proposition 1: It is sufficient to prove the result for unraveling information

structures. To see why, observe that if ti = t−i = ∞, then (n, n) is a BNE and, hence, the

principal’s worst communication equilibrium. Further, the information structure conditional

on ti ̸= ∞ for some i is an unraveling information structure, and so the analysis for unraveling

information structures would apply.

Then, fix a lower-rank unique unraveling information structure, (T, π) and let λ = (λi)i∈I

be an admissible ranking function satisfying lower-rank uniqueness. Let πi denote the

marginal distribution of ti. Let πθ
t denote the distribution of θ, conditional on ti ∈ Ti

for any t such that πi(t) > 0.

Recall that a communication equilibrium is defined by a map σ : T → ∆(AI); agents

report types mi ∈ Ti to a mediator, who then generates a recommendation a ∈ AI according

to distribution σ(m), privately shows recommendation ai to agent i, and each agent i finds

it optimal to truthfully report his type and obey the recommendation. Let rσ(m) = (r
σ(m)
i )i∈I

denote a random variable distributed according to σi(m) i.e., recommendation to agent i,

and let ri denote the realization of the recommendation revealing to agent i.

To prove the result, I will show that in any communication equilibrium σ, σ(m) = δ(n,n)

for each m with positive probability under π or, equivalently, P(rσ(m)
i = n) = 0 for any

positive probability m ∈ T . The proof proceeds by induction on λ-rank ∈ {0, 1, ...}.

Base Case: If Pπ(λi(ti) = 0) = 0 for each i and ti, then there is nothing to show. Other-

wise, fix any i ∈ I and ti ∈ Ti such that λ(ti) = 0 and Pπ(ti) > 0. The definition of unraveling

information structure implies that ti has a strict-BR to choose w, independent of −i’s ac-

tion. By lower-rank uniqueness, |Loweri(ti)| = 1.30 But then, for any r s.t. σ(m)({r}) > 0,

πθ
ti
(.|rσ(m)) = πθ

ti
(.) for any m with mi = ti. Since i had a strict-BR to choose w before

observing the recommendation independent of −i’s action and the recommendation does

not change i’s belief about θ, then to satisfy obedience, it must be that P(rσ(m)
i = n) = 0

for any m such that mi = ti.

Inductive Step: Suppose that P(rσi (m)) = n) = 0 for any m such that λ(mi) < k. I will

prove the statement for any m such that λ(mi) = k. To this end, fix any type profile t such

that λ(ti) = n such that π(t) > 0. If no such profile exists, we are done. Otherwise, let

t ≡ ti. By lower-rank uniqueness, |Loweri(t)| ∈ {0, 1}.
30Note that if λ(ti) = 0 and ti has positive probability, then |Loweri(ti)| = 0 is ruled out.
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Case 1: |Loweri(t)| = 0. In this case, player i with ti = t believes that player −i chooses

w with probability 1, a result of our inductive hypothesis and the definition of an unraveling

information structure that implies Pπ(λ(ti) = λ(t−i)) = 0.

Case 2: |Loweri(t)| = 1. Abusing notation, denote by Loweri(t) the unique element in

Loweri(t).

Claim 1. For each pair n, n′ ∈ Upperi(t),

P(rσ(m)
i = n) = P(rσ(m

′)
i = n)

for mi = m′
i = t, m−i = s, and m′

−i = s′. Further, for each s ∈ Upperi(t),

P(rσ(m)
i = n) ≥ P(rσ(m

′)
i = n)

for mi = m′
i = t, m−i = s, and m′

−i = Loweri(t).

Proof of Claim: If Upperi(t) = ∅, there is nothing to show. Otherwise, to prove the claim,

observe first that by the inductive hypothesis, truth-telling and obedience requires that for

all s ∈ Upperi(t), each agent’s payoff is maximized by reporting type truthfully and choosing

w. Consider now the payoff to agent −i with any type s ∈ Upperi(t) from reporting type

m̂ ∈ Upperi(t) ∪ Loweri(t) and choosing w:

P(ti ∈ Upper−i(s)|t−i = s)× E
(
u−i(w,w, θ)|t−i = s, ti ∈ Upper−i(s)

)
+

P(ti ∈ Lower−i(s)|t−i = s)×
(

P(ri = s|mi ∈ Lower−i(s),m−i = m̂)E (u−i(w, n, θ)|ti ∈ Lower−i(s), t−i = s)

+

P(ri = b|mi ∈ Lower−i(s),m−i = m̂)E (u−i(w,w, θ)|ti ∈ Lower−i(s), t−i = s)

)
where the first line follows from the inductive hypothesis. By lower-rank uniqueness, Lower−i(s) =

{t}, so the expression becomes
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P(ti ∈ Upper−i(s)|t−i = s)× E
(
u−i(w,w, θ)|t−i = s, ti ∈ Upper−i(s)

)
+

P(ti = t|t−i = s)×
(

P(ri = s|mi = t,m−i = m̂)E (u−i(w, n, θ)|ti = t, t−i = s)

+

P(ri = b|mi = t,m−i = m̂)E (u−i(w,w, θ)|ti = t, t−i = s)

)
Then, since u−i(w, n, θ) > ui(w,w, θ) by Assumption 1, the expression is maximized by re-

porting m̂ ∈ Upperi(t)∪Loweri(t) that maximizes P(ri = s|mi = t,m−i = m̂ = P(rσ(m)
i ) for

m with mi = t,m−i = m̂.

Observe then that agent i’s posterior after observing recommendation n has two proper-

ties: (i) i’s belief that t−i ∈ Loweri must weakly decrease, (ii) conditional on t−i ∈ Upperi,

i’s belief about θ is unchanged related to her interim belief and hence, her expected payoff

from any action profile conditional on t−i ∈ Upperi is unchanged.

Suppose now towards contradiction that P(ri = n|mi = ti = t) > 0. Consider then, the

payoff to obeying the recommendation, choosing n, less the payoff to disobeying, choosing

w:

U obey(t) ≡ P(t−i = Loweri(t)|ri = n,mi = t = ti)

×
(
P(r−i = n|ri = n,mi = t,m−i = Loweri(t))E (ui(n, n, θ)− ui(w, n, θ)|ti = t, t−i = Loweri(t))

+P(r−i = w|ri = n,mi = t,m−i = Loweri(t))E (ui(n,w, θ)− ui(w,w, θ)|ti = t, t−i = Loweri(t))

)
+ P(t−i ∈ Upperi(t)|ri = n,mi = t = ti)×

(
E (ui(n,w, θ)− ui(w,w, θ)|ti = t, ri = n, t−i ∈ Upperi(t))

)
If obedience is to hold, it must be that U obey(t) ≥ 0. By Assumption 2, it must be that sum
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of the terms in the second and third line is weakly positive. But then, by the claim:

U obey(t) ≤ Pπ(t−i = Loweri(t)|mi = t = ti)×
(

P(r−i = n|ri = n,mi = t,m−i = Loweri(t))E (ui(n, n, θ)− ui(w, n, θ)|ti = t, t−i = Loweri(t))

+ P(r−i = w|ri = n,mi = t,m−i = Loweri(t))E (ui(n,w, θ)− ui(w,w, θ)|ti = t, t−i = Loweri(t)))
+ P(t−i ∈ Upperi(t)|mi = t = ti)×

(
E (ui(n,w, θ)− ui(w,w, θ)|ti = t, t−i ∈ Upperi(t))

)
< 0

where the last line follows by the definition of an unraveling information structure. This

contradicts obedience, and so we conclude that P(ri = n|mi = ti = t) = 0, and the result

follows.

B Proofs of Sections 6

Before proving results in Sections 6 and 7, it is necessary to define a number of preliminaries

in order to modify results in Morris et al. (2022). Some of these are repeats of definitions

offered in Section 6.

Preliminaries. Let di(a−i, θ) ≡ ui(b, a−i, θ) − ui(s, a−i, θ). An outcome is a distribution

ν ∈ ∆(AI×Θ). Let Γ ≡ {∅, (1), (2), (1, 2), (2, 1)} and Γi ≡ Γ\{i, ∅}. Γ2 ≡ {(2), (1, 2), (2, 1)}.
An outcome is consistent if

∑
a∈AI

ν(a, θ) = µ(θ). An outcome is obedient if for each i ∈ I, ai ∈

{w, n}, a′ ∈ {w, n}: ∑
θ∈Θ

ui(ai, a−i)ν(ai, a−i) ≥
∑
θ∈Θ

ui(a
′, a−i)ν(ai, a−i)

An ordered outcome is a distribution νΓ ∈ ∆(Γ × Θ). Given γ ∈ Γ, let a−i(γ) denote the

action for −i equal to w if −i comes before i in γ or if i is not in γ while −i is, and n
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otherwise. An ordered outcome satisfies sequentual obedience if∑
γ∈Γi,θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ) > 0

for any i with vΓ(Γi×Θ) > 0. Let a(γ) denote the strategy profile in which agents appearing

in γ choose w and otherwise choose n. An outcome ν is induced by and ordered outcome νΓ

if

ν(a, θ) =
∑

γ:a(γ)=a

νΓ(γ, θ).

An outcome ν is said to satisfy sequential obedience if there exists an ordered outcome

νΓ ∈ ∆(Γ×Θ) that satisfies sequential obedience and induces ν.

Finally, an outcome ν satisfies asymmetric grain of dominance if there exists i and θ,

such that di(a−i, θ) > 0 for any a−i i.e., w is strictly dominant, and ν((w,w), θ) > 0.

An outcome ν is said to be S-implementable if there exists an information structure I
such that31

inf
σ∈C(I)

Eσ,I(v(a, θ) = Eν(v(a, θ)).

Finally, since payoffs are supermodular, for any information structure there will exist a

principal’s worst equilibrium—this coincides with the smallest equilibium when action w is

labeled 1 and action n is labeled 0.

Proof of Proposition 2: To prove this result, I will proceed in four steps:

1. Modify the statement and proof of Theorem 1(2) in Morris et al. (2022), so that only

asymmetric “grain of dominance” (defined in Morris et al. (2022), with asymmetric

version defined below) is necessary and the information structure used in the proof

never involves both agents having the same types if those types are finite.

2. Show that if the principal constraints herself to information structures that exhibit

asymmetric grain of dominance, it is without loss of generality for the principal’s

value to ignore information structures that do not generate perfect coordination in the

principal’s worst equilibrium—agents either both choose w or both choose n.

3. Show that information structures in (1) that satisfy the perfect coordination property

are partially unraveling information structures.

31Note that S-implementability corresponds to “smallest” equilibrium implementation in Morris et al.
(2022). Labeling w as 1 and n as 0, principal-worst equilibrium is the same as S-implementable.
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4. If there exists no state θ ∈ Θ such that at least one agent finds w dominant, then

the worst equilibrium under any information structure is the pure strategy profile in

which neither agent informs. Otherwise, I show that requiring asymmetric grain of

dominance is without loss of value for the principal.

Step 1: Modying Morris et al. (2022)’s Theorem 1(2): Since payoffs are supermod-

ular for agents, Morris et al. (2022)’s Theorem 1(1) applies, so that obedience, consistency,

and sequential obedience are necessary conditions for an outcome to be n-implementable.

Further, it is easy to see that if an outcome ν fails to satisfy asymmetric grain of dominance,

then it is not implementable; indeed, if asymmetric grain of dominance fails then each player

choosing n is an equilibrium. As a result, an additional necessary condition for ν to be

n-implementable is that ν satisfies asymmetric grain of dominance.

The restatement of Theorem 1(2) that I will prove is

If an outcome satisfies consistency, obedience, sequential obedience and asymmet-

ric grain of dominance, then it is S-implementable.

So, fix an outcome ν ∈ ∆(A×Θ) and suppose that it satisfied asymmetric grain of dominance.

For the proof, suppose that asymmetric grain of dominance is satisfied for player 1: there is

θ such that d1(a2, θ) > 0 and v((w,w), θ) > 0. The proof will work exactly the same if it is

i = 2 who has the dominant action, so I will only proceed with the case in which i = 1 has

the dominant action.

I will now follow the steps of Morris et al. (2022), pointing out where small modifications

must be made to the information structure. I will purposely stay as close as possible to their

proof, so the modification becomes clear.

Since ν satisfies sequential obedience, there exists an ordered outcome vΓ ∈ ∆(Γ × Θ)

that induces ν and satisfies sequential obedience. Since ν((w,w), θ) > 0 by asymmetric grain

of dominance, there is γ ∈ Γ containing all players with νΓ(γ, θ) > 0. Pick any ϵ > 0 so that

ϵ < νΓ(γ, θ) and define

ṽΓ(γ, θ) ≡
vΓ(γ, θ)

1− ϵ
−
(
111(γ,θ)=(γ,θ)

) ϵ

1− ϵ

where ϵ is sufficiently small that ν̃Γ satisfies sequential obedience (possible because ν does).

Since d1(a2, θ) > 0, there exists q1 < 1 such that

qd1(s, θ) + (1− q)min
θ ̸=θ

d1(s, θ) > 0. (4)
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By assumption 2, d2(b, θ) > 0, so there exists q2 < 1 such that

qd2(b, θ) + (1− q)min
θ ̸=θ

d2(s, θ) > 0. (5)

Let q = max{q1, q2}. This is the first minor difference from Morris et al. (2022): assumption

2 allows for a slightly less constrained dominance state assumption, here called asymmetric

grain of dominance.

Now, let η > 0 be such that
ϵ
2

ϵ
2
+ η

> q

and ∑
γ∈Γi,θ∈Θ

(1− η)1−n(a−i(γ))ν̃Γ(γ, θ)di(a−i(γ), θ) > 0.

for all i, where n(a−i(γ)) is and indicator equal to 1 if a−i(γ) = b. Let type space T be

defined as follows:

T1 =

{0, 1, 2, ...} if ν̃Γ(Γi ×Θ) = 1

{0, 1, 2, ...} ∪ {∞} otherwise

and

T2 =

{1, 2, ...} if ν̃Γ(Γi ×Θ) = 1

{1, 2, ...} ∪ {∞} otherwise

The only difference from Morris et al. (2022) is that T1 now contains 0. Let

ℓ(i, γ) ≡

ℓ if there exists ℓ ∈ {1, ..., k} such that iℓ = i

∞ otherwise

for each i ∈ I and γ = (i1, ..., ik) ∈ Γ. Then, let π ∈ ∆(T ×Θ):

π(t, θ) ≡



(1− ϵ)η(1− η)mν̃Γ(γ, θ) if ti < ∞ for some i and there exists m ≥ 0,

such that for all i, ti = m+ ℓ(i, γ)

ϵ
2

if t1 = 0, t2 = 1, θ = θ

ϵ
2

if t1 = 1, t2 = 2, θ = θ

(1− ϵ)ṽΓ(∅, θ) if t1 = t2 = ∞

0 otherwise
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The only difference between this information structure and the one in Morris et al. (2022) is

that the mass that was originally on t1 = 1 has been split between the new type t1 = 0 and

t1 = 1. It follows from Morris et al. (2022), that π is consistent. I state a modified version

of the claim A.1.

Modified Claim A.1 (from Morris et al. (2022)’s Theorem 1(2) proof). For any

ti with Pπ(ti) > 0,

π(θ|ti = 0) ≥ q.

To see this, observe that π(θ|t1 = 0) = 1 by definition, and for each i ∈ I

π(θ|ti = 1) ≥
ϵ
2

ϵ
2
+ η

≥ q (6)

Claims A.2 and A.3 in Morris et al. (2022)’s Theorem 1(2) proof do not need to be restated

and the proofs follow in exactly the same way. They are stated here for completeness (with

|I| = 2 plugged in)

Claim A.2 (from Morris et al. (2022)’s Theorem 1(2) proof). For any i ∈ I, any

τ ∈ {2, 3, ...}, and any S ⊂ I\i,

π({j ̸= i|tj} = S, θ|ti = τ) =
(1− η)1−|S|ν̃Γ({γ ∈ Γi|a−i(γ) = bS} × θ)

2∑
ℓ=1

(1− η)2−ℓν̃Γ({γ = (i1, ..., ik) ∈ Γi|iℓ = i} ×Θ)

where bS equals w if −i is in S and n otherwise.

Claim A.3 (from Morris et al. (2022)’s Theorem 1(2) proof). For any i ∈ I such

that ν̃Γ(Γi ×Θ) < 1, π({j ̸= i|tj < ∞} = S|ti = ∞) = ν(bS ,θ)
(1−ϵ)(1−ν̃Γ(Γi×Θ)

for all S ⊂ I\{i}.

Now, we can complete Step 1. First, observe that action w is strictly dominant for t1 = 0 and

t2 = 1 by Claim A.1 and conditions 4 and 5. For ∞ > τ ≥ 2, the same exact steps can be

made as in Morris et al. (2022) to show that for each type ti < ∞, it is a strict-BR to choose

w as long as types t−i < ti do so (definition of an unraveling information structure). So, the

unique rationalizable outcome is w for any ti < ∞, and the principal’s worst rationalizable

outcome is for all agents with finite type to choose w and all agents with time ti = ∞ to

choose n (and this is also the principal’s worst BNE).
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Step 2. I show that if an outcome ν satisfies asymmetric grain of dominance, it is without

loss for the principal’s value to use information structures that satisfy perfect coordination—

in the principal’s worst equilibrium, both choose w or both choose n.

From Step 1, we know that if an outcome ν can be generated as the principal’s worst

equilibrium from some information structure, then there exists a π(t, θ) defined on T × Θ

with T ∈ (N ∪ {∞})2 such that, in the principal’s worst equilibrium, agent i chooses w if

and only if ti = ∞. If Pπ(ti = ∞, t−i < ∞) = 0 for each i, then we are done. Otherwise,

consider the modification (T̃ , π̃) defined by:

• T̃i = (N ∪∞)2

• π̃((t1, 0), (t2, 0)) = π̃(t1, t2) if t1, t2 < ∞ or t1 = t2 = ∞

• π̃((t1, t2), (t2, 0)) = π̃(t1, t2) if t1 = ∞ and t2 < ∞

• π̃((t1, 0), (t2, t1)) = π̃(t1, t2) if t2 = ∞ and t1 < ∞

• π̃((t1, t
′
1), (t2, t

′
2)) = 0 otherwise

Under this information structure, the principal’s worst equilibrium involves players choosing

w when their type is (ti, 0) with ti < ∞ but also if their type (ti, x) with ti = ∞ and

x < ∞, consequences of Assumption 2 and supermodularity. Hence, the principal’s value

under under (T̃ , π̃) is higher than under (T, π).

As a result, it is without loss of generality for the principal’s value to constrain to the

subset of information structures described in step (1) with the property that π(t) > 0 only

if either (i) t1 = t2 = ∞ or (ii) t1, t2 < ∞.

Step 3. Observe that any information structure (T, π) from step (1) which satisfies π(t , θ) >

0 only if either t1 = t2 = ∞ or t1, t2 < ∞ has the following properties (i) π(t , θ) = 0 unless

|t1 − t2| = 1, (ii) π((m,m), θ) = 0 for any m ̸= ∞, (iii) (T, π) is a partially unraveling

information structure with ranking function λi(ti) = ti (a consequence of Claim A.1, and

the argument after Claim A.3 concluding the proof in Morris et al. (2022)).

These are the only properties required for an information structure to be a partially

unraveling information structures, and so combining steps 1 and 2 shows that if an outcome

satisfies asymmetric grain of dominance, it is without loss of value for the principal to restrict

to partially unraveling information structures.
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Step 4. Finally, I show that as long as there exists a state in which w is strictly dominant

for at least one agent, requiring asymmetric grain of dominance is without loss of value for

the principal. If ∄ Θ such that w is strictly dominant for one agent, then the principal’s worst

equilibrium under any information structure is for both agents to choose n with probability

1.

Otherwise, there exists a set Θ and some i, say i = 1, such that d1(a2, θ) > 0 for each

a2 ∈ {w, n} and any θ ∈ Θ. Fix an implementable outcome ν ∈ ∆(AI × Θ) that fails to

satisfy asymmetric grain of dominance, i.e., for every θ ∈ Θ, v((w,w), θ) = 0.

Let µ(θ) be the prior probability of θ and consider the modification

ν̃(a, θ) = (1− ϵ)ν(a, θ) + ϵ111a=(w,w)µ(θ).

Notice that ṽ(a, θ) satisfies asymmetric grain of dominance, as well as consistency. So, if

it satisfies obedience and sequential obedience, that will conclude the proof. Obedience for

r is maintained, by the dominance assumption for agent 1 and subsequently assumption 2

(Jointly Informing) for agent 2. The obedience constraint for n is unchanged, and obedience

for ṽ follows from obedience of

nu.

Since ν satisfies sequential obedience, there exists νΓ ∈ ∆(Γ × Θ) such that for each i

with νΓ(Γi ×Θ) > 0 we have ∑
γ∈Γi,θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ) > 0

and ν(a, θ) =
∑

γ|a=a(γ)

νΓ(γ, θ). Then, consider

ν̃Γ(γ, θ) = 111θ ̸=θνΓ(γ, θ) + 111θ=θ

(
(1− ϵ)νΓ(γ, θ) + ϵµθ111γ=(1,2)

)
.

For ϵ sufficiently small, sequential obedience holds. As a result, ṽ(γ, θ) is implementable or

ϵ sufficiently small. Finally, the maximum change in the principal’s value moving from ν to

ν̃ is O(ϵ), so the principal’s value can be approximated arbitrarily well by taking ϵ small.

This concludes the proof.

Proof of Proposition 7: Fix any public information structure and denote by sp the public

signal. For any public signal sp, the principal’s worst BNE is in pure strategies and is either
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(w,w) or (n, n). To see this, observe that there is no worst equilibrium in which one player

chooses w and the other chooses n, a result of the assumption 2 (Jointly Informing). Can a

mixed strategy equilibrium be the principal’s worst equilibrium? Suppose that some agent,

say player 1, is mixing with strictly positive probability on both w and n. Then, player 2

must be choosing n with strictly positive probability, otherwise player 1 has a strict best-

response to choose w. Then I claim that (n, n) is an equilibrium, which is weakly worse for

the principal. To see this, let pi be the probability that player i places on choosing w. Then,

letting E0(.) ≡ E(.|sp), best-response requires:

p−iE0(u(w,w, θ)) + (1− p−i)E0(u(w, n, θ)) ≤ p−iE0(u(n,w, θ)) + (1− p−i)E0(u(n, n, θ))

for each i, where the lhs is payoff to n and rhs is payoff to w (and with equality for i = 1,

who is strictly mixing). Rearranging yields

p−iE0(u(w,w, θ)− u(n,w, θ)) ≤ (1− p−i)E0(u(n, n, θ)− u(w, n, θ))

Observe that the left hand-side is positive, and so the right-hand side must be as well. Since

1 − p−i > 0 for each i, then choosing n is a best-response to −i choosing n, given sp. But

then (n, n) is an equilibrium.

Therefore, given any public signal the principal’s worst equilibrium is either (w,w) or

(n, n). As a result, we need only consider the effect of introducing private signals to the

public signal sp when worst-equilibrium behavior is (w,w) or (n, n).

If under sp, both players choose n in the principal’s worst equilibrium, the introduction of

private information cannot lower the principal’s value. Suppose instead sp is such that both

players choose w in the principal’s worst equilibrium. Then, there must exist some player,

say player 2, for whom w is strictly dominant.32 Then, under the simple discriminatory

information structure for agent 1, agent 2 still chooses w by supermodularity. But then,

player 1 chooses w by Assumption 2.

To see that a simple discriminatory information structure with public signal space P and

favored agent mapping i∗ is communication-proof, fix some public signal realization sp. In

any communication equilibrium, if i∗(sp) observes θ ∈ Θi∗(sp) (i.e., dominant to choose w)

then he must receive recommendation w with probability 1. Let i∗ ≡ i∗(sp). Denote by

tji the type of agent i ∈ I who observes signal j ∈ Θi ∪ {∅}. There are then two cases to

32Formally, suppose this is not true. Then, n is a (weak) best-response for each agent to some choice of
his partner. But, w is a strict best-response to w, so n must be a (weak) best-reponse to n. Hence, both
choosing n is the principal’s worst equilibrium.
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consider:

Case 1: Suppose that both agents choose w with probability 1 in the principal’s worst BNE.

Then, conditional on sp, the information structure is an unraveling information structure

satisfying lower-rank uniqueness: and hence, by Proposition 1, is communication-proof.

Case 2: Suppose that the principal’s worst BNE involves t∅−i∗ and t∅i∗ choosing n with

positive probability. Then, by supermodularity, the principal’s worst BNE is tθi∗ choosing

w for any θ ∈ Θi∗ and t∅i choosing n for each i ∈ I. Then, the only way a communication

equilibrium can lower the principal’s value is if tθi∗ chooses n with positive probability for

some θ ∈ Θi∗ , but this is impossible.

By Assumption 2, it is not possible that only one player chooses n with positive prob-

ability in the principal’s worst BNE. Hence, these two cases are exhaustive and show that

simple discriminatory information structures are communication-proof.

C Proofs of Section 7

Proof of Proposition 3: Observe first that it is without loss of generality to suppose

that v((n, n), θ) = 0, so I will proceed under this assumption. Observe also that since w is

dominant in state θ for both agents, I assume without loss of value for the principal that the

principal implements w after θ with probability 1.

Suppose that there exists no state in which some agent finds it strictly dominant to

whistleblow. Then, the principal’s worst equilibrium is (n, n) with certainty, independent of

the information structure. Then setting, θ∗ = θ and θ
∗
= θ delivers the result.

Suppose instead that there exists some state in which some agent finds it strictly dominant

to whistleblow (so there exist outcomes satisfying asymmetric grain of dominance). From

Proposition 2, rank unique partially unraveling information structures implement V ∗. As

a result, there exists an optimal outcome ν that is perfectly coordinated, i.e., ν((w, n), θ) =

ν((n,w), θ) = 0.33 As in Morris et al. (2022), the characterization of S-implementable

outcomes in the proof of Proposition 2, implies that the principal’s optimal value is the

33The closure of any set of perfectly coordinated outcomes includes only perfectly coordinated outcome.
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solution to the linear program

V ∗ = max
∑
θ∈Θ

∑
i∈I

(v((w,w), θ))wi(θ)

s.t.
∑
θ∈Θ

wi(θ)di(n, θ) + w−i(θ)di(w, θ) ≥ 0, i ∈ I

wi(θ) ≥ 0, i ∈ I, θ ∈ Θ∑
i∈I wi(θ) ≤ µ(θ), θ ∈ Θ

(P)

and, if (w∗
i (θ))i∈I,θ∈Θ is an optimal solution to this problem, then an optimal outcome is:

ν(a, θ) =



∑
i∈I

w∗
i (θ) a = (w,w)

µ(θ)−
∑
i∈I

w∗
i (θ) a = (n, n)

0 otherwise

It is convenient to formulate the dual of (P), and apply linear programming duality to find:

V ∗ = min
∑
θ∈Θ

λ(θ)µ(θ)

s.t.

αi(θ)︷ ︸︸ ︷
v((w,w), θ) + γidi(n, θ) + γ−id−i(w, θ)−λ(θ) ≤ 0, i ∈ I, θ ∈ Θ

λ(θ) ≥ 0, θ ∈ Θ

γi ≥ 0, i ∈ I

(D)

Given (γi)i∈I , an optimal λ(θ) is λ(θ) = max{0,max
i∈I

{αi(θ)}}. Complementary slackness

implies that if (λ(θ), γi)i∈I,θ∈Θ is an optimal solution to (D), then there is an optimal solution

(wi(θ))i∈I,θ∈Θ to (P) such that λ(θ) = max{0,max
i∈I

{αi(θ)}} > 0 =⇒ w1(θ) + w2(θ) = µ(θ)

and maxi∈I αi(θ) < 0 =⇒ w1(θ) = w2(θ) = 0.

Observe that because the environment is linear, α(θ) is affine in θ. Then, consider a

possible solution in which αi(θ) is constant in θ for both i, in which case either λ(θ) = c > 0

for all θ, or λ(θ) = 0 for all θ. In the former case, complementary slackness implies that

the principal achieves first best i.e., V ∗ =
∑
θ∈Θ

µ(θ)v((w,w), θ). Then, the result follows by

setting θ∗ = θ∗. Instead, suppose λ(θ) = 0. But then, observe that since w is dominant at θ
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for both agents and ∆v(θ) > 0 (since di(n, θ) ≥ 0 and di(w, θ) > 0), the only way λ(θ) = 0 is

if γi = γ−i = 0. But in that case, if λ(θ) = 0 for all θ ∈ Θ, it must be that v((w,w), θ) = 0 for

all θ ∈ Θ. In that case, the principal is indifferent whether agents choose w or n; Then, an

optimal policy is to provide no information, in which case agents either choose w or choose

n independent of θ. Then setting θ∗ = θ or θ∗ = θ leads to the result.

Suppose next that αi(θ) is constant for some i but is non-constant for −i, say i = 1.

Again since w is dominant at θ = θ, it cannot be that αi(θ) < 0. If α1(θ) > 0, then the same

argument as above applies. Suppose instead that α1(θ) = 0 for all θ. As before, it must be

that Di(θ) > 0 for each i, and so it must be that γi = 0 for each i. But then, as above,

∆v(θ) = 0, and the principal can set θ∗ = θ.

So, I proceed now under the assumption that αi(θ) is non-constant for each i. First,

suppose that αi(θ) = 0 for some i. In that case, γi = 0 for each i and so λ(θ) = v((w,w), θ).

Then, V ∗ =
∑
θ∈Θ

µ(θ)v((w,w), θ). If v((w,w), θ) ̸= 0 for each θ, then the principal necessarily

implements w in each state, and setting θ∗ = θ leads to the result. Suppose instead that

v((w,w), θ) = 0 for some θ. Since v((w,w), θ) is linear, there are three possibilities:

• v((w,w), θ) = 0 for all θ: in this case the principal is indifferent whether agents choose

w or n, in which the result follows as above.

• v((w,w), θ) = 0 and v((w,w), θ) > 0 otherwise: In this case, the principal must induce

w with probability 1 in every state other than θ. But, I assumed that the principal

implements w after θ with probability 1, and so the principal in fact implements w

with probability 1 after each state. Setting θ∗ = θ implies the result.

• v((w,w), θ) = 0 and v((w,w), θ)) > 0 otherwise:

So, I proceed under the assumption that αi(θ) ̸= 0 for each i. As already stated, it must

be that αi(θ) > 0 for each i.

Case 1: αi(θ) is strictly decreasing in θ for some i. In this case, since αi(θ) > 0, it

must be that αi(θ) > 0 for all θ ∈ Θ. But then by complementary slackness, an optimal

outcome for the principal is w with probability 1, independent of θ. Setting θ∗ = θ implies

the result.

Case 2: αi(θ) is strictly increasing in θ for each i. In this case, let θ∗i = min{θ|αi(θ) ≥
0}. Then, for any θ > min

i∈I
{θ∗i }, λ(θ) > 0 and complementary slackness implies the principal
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implements w with certainty after any such θ. Since αi(θ) is strictly increasing, for any

θ < min
i∈I

{θ∗i }, αi(θ) < 0 for each i, in which case λ(θ) = 0, and the first constraint in (D)

constraint is slack; as a result, it must be that the principal implements w with probability

0 after any such θ. Setting θ∗ = min
i∈I

{θ∗i } implies the result.

Proof of Proposition 5: The following chain of implications holds regarding asymmetric

grain of dominance (AGD):

AGD at Gϵ,ϵ =⇒ AGD at Gϵ,δ =⇒ AGD at Gδ,δ =⇒ AGD at G.

If AGD fails in some environment, then the principal’s value in that environment is the

smallest feasible (and of course is independent of ϵ, δ). I prove the result assuming that

AGD is satisfied at G, but the proof is identical if AGD is satisfied at some but not all of

the environments G, Gδ,δ, Gϵ,δ, and Gϵ,ϵ).

I prove first the relationship

V ∗(G) ≤ V ∗(Gϵ,ϵ) ≤ V ∗(Gδ,δ) (7)

for any ϵ, δ ∈ R+. The relationship of V ∗(Gϵ,δ) to the others follows immediately from this

and Proposition 4.

For any environment G, let

dni (θ;G) ≡ ui(w, n, θ)− ui(n, n, θ).

Plugging in the linear, symmetric preferences, we have

dni (θ;G) = (gi(n, n;G)− gi(n,w;G))(1− θ) + (ℓi(n, n;G)− ℓi(n,w;G))θ.

Letting gni (G) ≡ gi(n, n;G)− gi(n,w;G) and ℓni (G) ≡ ℓi(n, n;G)− ℓi(n,w;G), then

dni (θ;G) = gni (G)(1− θ) + ℓni (G)θ (8)

For a symmetric environment G, and γ ∈ R+, then:
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dn1 (θ;Gγ,γ) = gn1 (Gγ,γ)(1− θ) + ℓn1 (Gγ,γ)θ (9)

= (gn(G) + ϵ)(1− θ) + ℓn(G)θ (10)

where I drop the dependence of gn1 (G) on i since G is symmetric. Similarly,

dn2 (θ;Gγ,γ) = (gn(G)− ϵ)(1− θ) + ℓn(G)θ (11)

From the proof of Proposition 3, for any γ ≥ 0,

V ∗(Gγ,γ) = max
∑
θ∈Θ

∑
i∈I

(v((w,w), θ))wi(θ)

s.t.

Φ1((wi)i∈I ;γ)︷ ︸︸ ︷∑
θ∈Θ

w1(θ) ((g
n(G) + γ)(1− θ) + ℓn(G)θ) + w2(θ)(g

n(G(1− θ) + ℓn(G)θ)) ≥ 0

Φ2((wi)i∈I ;γ)︷ ︸︸ ︷∑
θ∈Θ

w2(θ) ((g
n(G)− γ)(1− θ) + ℓn(G)θ) + w1(θ)(g

n(G(1− θ) + ℓn(G)θ)) ≥ 0

wi(θ) ≥ 0, i ∈ I, θ ∈ Θ∑
i∈I wi(θ) ≤ µ(θ), θ ∈ Θ

(P γ)

From the proof of Proposition 3, there exists θ∗, θ
∗ ∈ Θ, x∗, z∗ ∈ R+ with x∗ ≤ µ(θ

∗
) and

z∗ ≤ µ(θ∗), and i∗ ∈ I such that an optimal solution to this linear program is (w∗
i )i∈I defined,

for each θ ∈ Θ, as:

wi∗(θ) ≡ 111θ>θ
∗µ(θ) + 111θ=θ

∗x∗

w−i∗(θ) ≡ 111θ∗<θ<θ∗µ(θ) + 111θ=θ
∗(µ(θ∗)− x∗) + 111θ=θ∗z

∗

Call any solution of this form a monotone partition solution. Now, observe that:

∂Φ1(w1, w2)

∂γ
=
∑
θ∈Θ

w1(θ)(1− θ)

∂Φ1(w1, w2)

∂γ
= −

∑
θ∈Θ

w2(θ)(1− θ)
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I claim that there exists an optimal solution of the form described above with the property
∂Φ1((wi)i∈I)

∂γ
≥ −∂Φ2((wi)i∈I)

∂γ
, and the proof is relegated to Lemma 3. Without loss then, suppose

that ∂Φ1((wi)i∈I)
∂γ

≥ −∂Φ2((wi)i∈I)
∂γ

.

To complete the proof, I show that for any γ′ > γ such that Gγ′,γ′
is admissible, there

exists θ
∗′
, x∗′ ≤ µ(θ

∗′
) such that

w
(x∗′ ,θ∗

′
)

i∗ (θ) ≡ 111
θ>θ

∗′µ(θ) + 111
θ=θ

∗′x∗′

w
(x∗′ ,θ∗

′
)

−i∗ (θ∗
′
) ≡ 111θ∗<θ<θ∗µ(θ) + 111

θ=θ
∗′ (µ(θ

∗
)− x∗′) + 111θ=θ∗z

∗

is feasible in problem P γ′
. Then, since the principal’s value under (w′

i)i∈I is identical to the

principal’s value under (wi)i∈I , the proof will be complete.

To show this, fix γ′ > γ. Let Q(p) be the quantile function of µ(θ) (where recall, Θ ⊂ R,

and consider the function Q̂(p) =

( ∑
θ<Q(p)

µ(θ)− p,Q(p)

)
. Define

wp ≡ (wp
i )i∈I ≡

(
w

Q̂(p)
i

)
i∈I

.

Let p∗ be such that Q̂(p∗) = (x∗, θ
∗
). Finally, let

Φi (p; γ
′) ≡ Φi

((
w

Q̂(p)
i

)
i∈I

; γ′
)
.

Now, observe that for any p ∈ [0, 1]

Φ1(p; γ
′) = Φ1(p; 0) + γ′

∑
θ∈Θ

wp
1(θ)(1− θ) ≥ Φ1(p; γ) (12)

Φ2(p; γ
′) = Φ2(p; 0)− γ′

∑
θ∈Θ

wp
2(θ)(1− θ) ≤ Φ2(p; γ) (13)

and since Q̂(p∗) is feasible in Gγ, is must be that

Φ1(p
∗; γ) ≥ 0 (14)

Φ2(p
∗; γ) ≥ 0 (15)

Further, for any p, p′ ∈ [0, 1]

Φ1(p; 0)− Φ1(p
′; 0) = Φ2(p

′; 0)− Φ2(p; 0) (16)
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The goal is to find p∗
′
such that

Φ1(p
∗′ ; γ′) ≥ 0 (17)

Φ2(p
∗′ ; γ′) ≥ 0 (18)

There are two cases to consider:

• i∗ = 2: In this case, it is straightforward to see that Φ1(p, γ
′) is decreasing in p and

Φ2(p, γ
′) is increasing in p. Also, wp

2(θ) is decreasing in p and wp
1(θ) is increasing in p.

Let p1 be a solution in [p∗, 1] to

Φ1(p1; γ
′)− Φ1(p

∗; γ) = 0 (19)

which exists because Φ1(p; γ) is continuous in p, Φ1(p
∗; γ′) ≥ Φ1(p

∗; γ) by (12), Φ1(p
∗; γ) ≥

0 by (14), and Φ1(1; γ
′) ≤ 0 by Assumption 1. Then, I claim that

Φ2(p1; γ
′)− Φ2(p

∗; γ) ≥ 0

from which the result follows by (15). To see why, observe that for any p′ ∈ [p∗, 1],

Φ2(p
′; γ′)− Φ2(p

∗; γ′) = Φ1(p
∗; γ′)− Φ1(p

′; γ′) ≥ 0 (20)

by (16) and the definition of wp
i . Further, by Lemma 3 (proof given below),

0 ≥ Φ2(p
∗; γ′)− Φ2(p

∗; γ) ≥ Φ1(p
∗; γ)− Φ1(p

∗; γ′) (21)

for γ′ ≥ γ. Combining (20) and (21),

Φ2(p1; γ
′)− Φ2(p

∗; γ) = Φ2(p
∗; γ′)− Φ2(p

∗; γ) + Φ2(p1; γ
′)− Φ2(p

∗; γ′)

= Φ2(p
∗; γ′)− Φ2(p

∗; γ) + Φ1(p
∗; γ′)− Φ1(p1; γ

′)

≥ Φ1(p1; γ)− Φ1(p
∗; γ′)

= 0

where the second lines follows by (20) and (21) and the last line follows by the definition

of p1.

• i∗ = 1: The proof is essentially the same, except that Φ1 is increasing in p rather than
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decreasing and Φ2 is decreasing in p rather than increasing (so one must reverse all of

the relevant equations).

Lemma 3. Fix a symmetric linear environment G, in which payoffs are supermodular for

agents, and w is dominant for both agents at θ. Then, for any γ ≥ 0 and admissible

perturbation Gγ,γ, there exists a monotone partition solution of (P γ), w = (w1, w2) in which∑
θ∈Θ

(1− θ)w1(θ) ≥
∑
θ∈Θ

(1− θ)w2(θ) (22)

Proof. From Proposition 3, there exists a monotone partition solution to the principal’s

problem, denoted by w = (w1, w2). Recall the constraints in (P γ):

Φ ((wi)i∈I ; γ) ≥ 0, i ∈ I

wi(θ) ≥ 0, i ∈ I, θ ∈ Θ∑
i∈I wi(θ) ≤ µ(θ), θ ∈ Θ

(23)

Suppose that at w the result in the lemma statement holds, then the proof is complete.

Otherwise, suppose that ∑
θ∈Θ

w1(θ)(1− θ) <
∑
θ∈Θ

w2(θ)(1− θ) (24)

Since w is a solution, it is feasible, and hence (using the definition of Φ)

Φ1(w; γ) = Φ1(w; 0) + γ
∑
θ∈Θ

w1(θ)(1− θ) ≥ 0 (25)

Φ2(w; γ) = Φ2(w; 0)− γ
∑
θ∈Θ

w2(θ)(1− θ) ≥ 0 (26)

From the definition of a monotone partition solution, there exists i∗ ∈ I, θ∗, θ
∗ ∈ Θ, x∗ ≤

µ(θ
∗
) and z∗ ≤ µ(θ∗) such that

wi∗(θ) ≡ 111θ>θ
∗µ(θ) + 111θ=θ

∗x∗

w−i∗(θ) ≡ 111θ∗<θ<θ∗µ(θ) + 111θ=θ
∗(µ(θ∗)− x∗) + 111θ=θ∗z

∗
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There are two cases to consider:

• i∗ = 2: Consider now the reverse policy v = (w2, w1). Then, observe that by definition,

Φ1(v; γ)− Φ1(w; γ) = Φ2(w; γ)− Φ2(v; γ) + 2γ
∑
θ∈Θ

w2(θ)(1− θ)− w1(θ)(1− θ)

≥ Φ2(w; γ)− Φ2(v; γ) (27)

By (26), Φ1(v; γ) ≥ 0. If Φ1(v; γ) ≤ Φ1(w; γ), then it must be that Φ2(w; γ) −
Φ2(v; γ) ≤ 0, and the result follows from (26). Otherwise, suppose Φ1(v; γ) > Φ1(w; γ).

Then, let pv be defined such that (wpv

i )i∈I = v and let p∗ ∈ [pv, 1] be such that,

Φ1(w
p∗ ; γ) = Φ1(w; γ) (28)

which exists because at p = pv, Φ1(w
p; γ) = Φ1(v; γ) > Φ1(w; γ) ≥ 0 by assumption

and (25), and at p = 1, Φ1(w
p; γ) < 0. Then by definition,

Φ1(v; γ)− Φ1(w
p∗;γ) ≤ Φ2(w

p∗;γ)− Φ2(v; γ) (29)

Then,

Φ2(w
p∗ ; γ)− Φ2(w; γ) = Φ2(w

p∗ ; γ)− Φ2(v; γ) + Φ2(v; γ)− Φ2(w; γ)

≥ Φ1(v; γ)− Φ2(w
p∗ ; γ) + Φ2(w; γ)− Φ2(v; γ)

= Φ1(w; γ)− Φ1(w
p∗ ; γ)

= 0

where the second line follows from (27) and (29) and the last line follows from the

definition of p∗. Thus, wp∗ is also feasible for the principal, and delivers the same

value. To conclude, observe that by definition and the fact that p∗ ≥ pv and the

assumption that
∑
θ∈Θ

w1(θ)(1− θ) <
∑
θ∈Θ

w2(θ)(1− θ),

∑
θ∈Θ

wp∗

1 (θ)(1− θ) ≥
∑
θ∈Θ

wpv

1 (θ)(1− θ) ≥
∑
θ∈Θ

wpv

2 (θ)(1− θ) ≥
∑
θ∈Θ

wp∗

2 (θ)(1− θ).

• i∗ = 1: The proof is identical, except that Φ1(w
p; γ) (Φ2(w

p; γ)) is increasing (de-

creasing) in p and p∗ is chosen in the set [0, pv] rather than [pv, 1]. It is omitted for
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concision.

D Public Information Design in Section 3

In this section I demonstrate that public information design cannot achieve the principal’s

first best in the example of Section 3. For simplicity, suppose that v(a, θ) = v(a, θ′) for

any pair θ, θ′ ∈ {TT,HT, TH}. An information structure (T, π) is called public if whenever

π(ti, t
′
−i) > 0 for some pair (ti, t−i) ∈ T , π(ti, t

′
−i) = 0 for any t′−i ̸= t−i. After any signal,

the principal’s worst communication equilibrium is the same as the principal’s worst BNE,

is in pure strategies, and is either (w,w) or (n, n).34 The principal’s value is achieved as the

limit of values of the following public information structures as ϵ → 0:35

1. The principal sends a binary public signal, p ∈ {n,w}

2. Signal p = n is sent if θ ̸= HH with prob. 1
3
+ ϵ and if θ = HH with prob. 0

3. Signal p = w is sent after θ ̸= HH with prob. 2
3
− ϵ and if θ = HH with prob. 1

After p = w, w is strictly dominant for each i, so (w,w) is the unique equilibrium. After

p = n, the principal’s worst equilibrium is (n, n). As a result, as long as v((w,w), θ) >

v((n, n), θ) for each θ, the principal cannot achieve her first best using public information

design alone.

E Rationalizability and BNE

In this section, I present an example of a crime game which does not have supermodular

payoffs in each state, along with an information structure in which the principal’s worst BNE

is strictly better than the principal’s worst rationalizable outcome.

Suppose that T1 = {0} and T2 = {0, 1}, so that player 1 has a single type while player

2 has two types. Let Θ = {0, 1}. The information structure is π((0, t2), θ2) = 111t2=θ2),

i.e., player 2 is fully informed of the state while player 1 is not informed beyond the prior.

Suppose that the prior is PF (θ = 1) = PF (θ = 0) = 1
2
.

When θ = 0, payoffs are

34It is straightforward to show that, in equilibrium, if one agent mixes between actions then the other
agent must as well. Assumption 2—(w,w) is an equilibrium—then implies that (n, n) is an equilibrium.

35The ϵ perturbation is required to guarantee strict incentives.

60



n w

n 5, 3 − 1
10
, 5
2

w 100, 0 0, 2

and when θ = 1, payoffs are

n w

n 3, 3 0, 2

w 2, 0 1, 1

When θ = 0, the payoffs of player 1 are as in a prisoner’s dilemma while the payoffs

of player 2 are as in a coordination game. When θ = 1, the game is a coordination game.

Observe that this environment satisfies Assumptions 2 and 1, (i) if −i chooses w, w is always

a strict best-response and (ii) i’s payoff is higher when −i chooses n than when −i chooses

w.

Bayesian Nash Equilibrium. Under the information structure described above, there is

no equilibrium in which all types choose n: if t2 = 0 chooses n with probability 1, then t1 = 0

chooses w. Thus, either t2 = 0 chooses n with probability less than 1 or t1 = 0 chooses w.

Rationalizability. If type t2 = 0 chooses n, type t1 = 0 has strict best-response w. If type

t2 = 0 chooses w and type t2 = 1 chooses n, type t1 = 0 has strict best-response n. If type

t1 = 0 chooses n, type t2 = 1 has strict best-response w. If t1 = 0 chooses w, type t2 = 1

has strict best-response w. As a result, rationalizability does not eliminate any actions, and

the principal’s worst rationalizable action profile is that all agents choose n.
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