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Abstract

A regulator faces a stream of agents engaged in crimes with stochastic returns.

The regulator designs an amnesty program, committing to a time-path of punishments

for criminals who report their crimes. In an optimal program, time-variation in the

returns from crime can generate time-variation in the generosity of amnesty. I construct

an optimal time-path and show that it exhibits amnesty cycles. Amnesty becomes

increasingly generous over time until it hits a bound, after which the cycle resets.

Agents engaged in high return crime report at the end of each cycle, while agents

engaged in low return crime report always.

To stop ongoing crime, a regulator can offer preferable treatment to criminals who self-

report. These amnesty, or self-reporting, programs appear in such diverse contexts as illegal

gun ownership, collusion, desertion in war, tax evasion, espionage1, civil conflict, and cor-

ruption. For instance, the U.S. Department of Justice operates a program that offers lenient

treatment to self-reporting cartel members, which has become its “most important invest-

igative tool for detecting cartel activity.”2 The Red Army’s amnesty for military desertion

in June 1919 induced the return of over 100,000 deserters (Figes, 1990). Australia’s gun

buy-back of 1997 collected more than 650,000 weapons (Leigh and Neill, 2010). The Chieu
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1Such as the amnesties offered to British informants by the Irish Republican Army in the 1980’s.
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Hoi program offered amnesty to defectors during the Vietnam war, enticing over 100,000

(Wosepkat, 1971).3

An extensive theoretical literature has investigated the use of self-reporting programs

in one-shot regulation.4 Less attention has been paid to the intertemporal properties of

these programs, which are often offered on a repeated, time-limited, basis. The Red Army’s

Central Anti-Desertion Commission operated repeated amnesty periods, interspersed with

periods of harsh enforcement and a similar (but less frequent) policy has historically been

applied to desertion in French militaries.5 The Brazilian gun buyback program has been

run four times since 2013.6 The U.S. has operated a number of tax-related self-reporting

programs, often on a repeated, time-limited, basis.7 Other programs are offered continuously.

For instance, the U.S. Department of Justice’s cartel leniency program and the Mexican gun

buyback are, and the Chieu Hoi program was, run continuously without explicit adjustment

to the terms of self-reporting.

In this paper, I ask: how should the terms of self-reporting programs be designed over

time? I study a design problem in which criminal agents arrive at a time-homogeneous rate

and their returns from crime are private, idiosyncratic and evolve over time. In particular,

criminals can transition from a high return state of crime to a low return state of crime. A

regulator commits to a time-path of punishments for agents who self-report before they are

detected that applies uniformly to all agents. The range of possible punishment is bounded

and agents may be exogenously detected, at which point the regulator applies the maximum

punishment possible. An agent’s only decision is when, if ever, to self-report.

A key feature of the environment is that returns from crime change from high to low

over time and this can lead to optimal self-reporting terms that change over time. To see

why, compare two extreme policies. The first is a static policy, offering the same terms for

self-reporting at all times. This policy lets the agent benefit both from crime while his return

is high and from self-reporting once his return is low. At the opposite extreme is a one-time

policy, in which agents only have one chance to self-report for favorable treatment and are

otherwise treated harshly, as if detected exogenously. Under the one-time policy, agents with

high returns from crime choose to self-report rather than wait for their returns to become

low, knowing that by then the option to self-report will be gone. The one-time policy is

therefore able to generate self-reporting by higher return agents than is the static policy.

The drawback of the one-time policy is that agents who arrive after the single reporting

3The exact number is not entirely clear, with possibly inflated statistics.
4See Andreoni (1991), Malik (1993) and Kaplow and Shavell (1994) for early contributions.
5See Wright (2012) for desertion in the Red Army and Forrest (1989) for desertion in French militaries.
6See Macinko et al. (2007).
7Luitel and Sobel (2007), OECD (2015)
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opportunity never self-report. The regulator must then balance two forces: (i) enticing

contemporaneous agents to self-report by offering a future with less opportunity for self-

reporting and (ii) enticing future agents to self-report by not completely shutting down

these opportunities. This trade-off is explored in the remainder of the paper.

The basic features of the model are motivated by the following observations. First, returns

from crime often accrue slowly over time. For instance, deserters value each moment they

avoid military duties, and cartels accrue profits from price-fixing slowly over time. Second,

returns from crime are private, idiosyncratic and change over time. Military deserters face

uncertain food and shelter availability, and an uncertain risk of being caught (Forrest, 1989).

Illegal gun owners may leave crime (Willmer, 1971) or find themselves in need of the money

from a gun buyback (Dreyfus et al., 2008). Cartels face fluctuating demand conditions,

new entrants de-stabilize collusion, the risk of detection changes over time (Connor (2007),

Gärtner (2014)), and these may be difficult to observe until long after the cartel has been

detected, or ever. Third, in many settings of interest, crime has long-term, irreversible effects:

a deserter cannot stop being a deserter without permission, a change in tax payment can

spark IRS scrutiny, and in general the cessation of crime may spark increased scrutiny.8 This

irreversibility motivates the assumption that the only way to leave crime is to self-report to

the regulator. Finally, amnesty typically takes the form of a reduction in punishments for

any agent who self-reports at a given time, motivating the regulator’s problem as a choice

of a time path of punishments that applies uniformly to all agents.9

The main result (Theorem 1) characterizes an optimal amnesty policy and shows that it

takes a cyclical form; the punishment upon self-reporting declines over time until it hits the

minimum feasible punishment, after which it jumps upward, and this process repeats itself.

The declining path induces agents with low returns from crime to immediately report, and

ensures they are indifferent between immediately reporting and delaying reporting until the

end of the cycle. Agents with high returns from crime report at the end of each cycle, when

the self-reporting policy is at its most generous (i.e. the punishment upon self-reporting is

at its minimum). The frequency of cycles increases with the risk of detection, the maximum

punishment, and the rate of transition from high to low return crime.

To develop intuition for why this is optimal, consider a simplified class of policies—at

any time, the regulator can only offer the minimum or the maximum punishment—and

consider a simplified problem—the regulator only loses value from the operation of high

return crime (i.e. does not care about low return crime). In this case, the regulator’s only

choice is the frequency with which to offer the minimum punishment to self-reporters; too

8See for instance Baer (2008) on such intertemporal linkages in corporate fraud.
9In Section VI, the features of the model are further discussed and interpreted.
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frequently and only agents with low returns from crime will report, because agents with high

returns know that once they transition to the low return state they will only have to wait

a short time before an opportunity to report for the minimum punishment arises, but not

frequently enough and the mass of criminals with high returns from crime will grow large in

the intervening time. As a result, the regulator offers the minimum punishment as frequently

as possible without violating the incentives of agents with high returns from crime to report

at such times.

In this simplified problem but without the constraint to use only the minimum or max-

imum punishment, it turns out that it is optimal not to use punishments strictly between

the minimum and maximum. The value of using such interior punishments in the simplified

problem would be to adjust the delay between times at which high types report. For in-

stance, the regulator could offer rapidly increasing punishments for reporting, followed by a

long period in which the maximum punishment is imposed for reporting, which then repeats.

This can induce reporting by high types at high frequency (i.e. quickly after they arrive)

while punishments initially increase, but this will be followed by a long period of time with no

reporting. Such a policy trades long-term losses—a long future period with no reporting—for

short-term gains—high frequency reporting for a short period of time. It turns out this trade

is never beneficial for the regulator. The basic reason is a backloading motive on the part of

the regulator. Agents face a risk of detection, which acts like additional time discounting;

in contrast, because the regulator is constantly facing newly arriving agents, she does not

face any such additional discounting. This effectively makes agents less patient than the

regulator so that trading long-term losses for short-term gains is never optimal.10

To solve the general problem where the regulator loses value from the operation of both

high and low return crime, I show that the solution to the simplified problem can be trans-

formed into one in which low types report immediately and high type behavior is unchanged,

by setting the punishment equal to the low type’s value of mimicking the behavior of high

types; this generates the declining punishments along each cycle’s path in the optimal policy.

In Section V, I discuss a number of empirical settings in which dynamic self-reporting

policies play a role. In the case of military desertion, I recount qualitative evidence from a

case study of the Red Army’s anti-desertion campaign in Karelia, detailed in Wright (2012),

among other sources, to argue that forces highlighted in the model could plausibly have

contributed to the observed use of dynamic policies. I move to illegal gun ownership and

consider how the design results of the model may be applied to improve amnesty and buyback

programs. Last, I discuss the application of the model to voluntary disclosure and amnesty

10The backloading motive is further clarified in Online Appendix G, where I extend the model to allow
agents to arrive at a time-inhomogeneous rate, and show how this can reverse the backloading motive.
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programs in tax collection.11

After reviewing the literature, I introduce the model in Section I and analyze it in Sections

II and III. In Section IV, I present comparative statics and discuss how investments in features

of the environment can complement dynamic amnesty. In Section V, I present applications.

Assumptions and modeling choices are discussed in Section VI. I conclude in Section VII.

Contribution. This paper makes two contributions. First, it proposes a novel mechanism

through which intertemporal variation in amnesty may be optimal. In certain settings, such

as the Red Army’s anti-desertion campaign, qualitative evidence is provided that supports

this mechanism as a plausible contributor to the decision to vary amnesty over time. In other

settings, such as tax and gun amnesty, in which the intertemporal variation in amnesty is

more naturally understood as driven by other forces, the model is used to highlight a possible

benefit to such intertemporal variation and to propose potential policy improvements.

Second, the paper solves a novel dynamic design problem, in which a stream of agents

arrives over time with stochastic values for an interaction with a regulator and can choose

to irreversibly end their interaction at some cost (i.e. amnesty). The most closely related

work is in the determination of an optimal price path for a durable goods monopolist facing

a stream of buyers arriving over time with stochastic values for the product, which I discuss

below in the related literature section.

Literature. This paper is related to the theoretical literature on self-reporting programs,

the intertemporal price discrimination literature in economics and operations research, and

the dynamic mechanism design literature.

The early work of Andreoni (1991), Malik (1993), and Kaplow and Shavell (1994) studied

law enforcement and self-reporting behavior in one-shot settings. Much of the subsequent lit-

erature is concerned with one-shot self-reporting settings in which the optimal intertemporal

use of amnesties cannot be studied.

Nevertheless, the dynamic properties of self-reporting programs have received some at-

tention in the theoretical and empirical literature, although no theory has been developed

that studies the role of time-variation in the returns from crime. For instance, Marchese and

Cassone (2000) rationalizes repeated tax amnesties as a method of discriminating between

tax payers with ex-ante different but static types, which I discuss in more detail in the

tax amnesty applications section. Bagirgan (2020) shows that repeated tax amnesties can

arise without commitment in a model with government reputation formation. Wang, Sun

11In some settings, in particular tax collection, the perceived fairness of enforcement may lead to a moral
obligation to comply that generates higher compliance than would be implied by enforcement strength alone.
In such cases, amnesty may backfire and lead to a deterioration of this moral obligation.
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and de Véricourt (2016) studies how a regulator should design remediation and inspection

policies for environmental hazards that arrive randomly over time e.g. leaks. A firm has an

option to delay repair of its hazard and the paper focuses on the interaction between the

inspection policy and penalties. When the rate of inspection (like the risk of detection in

this paper) cannot be chosen and is constant over time, static self-reporting programs are

optimal, unlike in this paper. I focus on the role that dynamic self-reporting programs play

absent control of inspection policies but in the presence of dynamic returns from crime. In

this sense, the papers are complementary.12

This paper is related to work in intertemporal price discrimination by a durable goods

monopolist, such as Conlisk, Gerstner and Sobel (1984), Deb (2014), Garrett (2016) and

Araman and Fayad (2020). The most closely related work is Garrett (2016) who studies

a durable goods monopolist choosing a price path for dynamically arriving agents with

changing values for a product and finds that cyclical pricing is optimal. The underlying

intuition for why optimal policies may fluctuate is closely related. A fundamental difference

between our papers is the limited punishments and rewards the regulator in this paper has

at her disposal; the regulator cannot punish above a maximum level, and faces a bound on

the self-reporting incentive she can offer.13 This constraint makes the regulator’s problem

non-trivial but precludes the use of techniques along the lines of Garrett (2016). Solving the

model in this paper therefore requires a different approach that explicitly incorporates these

limited punishments. I provide a more detailed discussion of this difference in Section VI.

Preferences in this paper also differ from those of the durable good monopoly setting, and

this leads to different intuition underlying the optimal policy. In particular, the regulator

is concerned only with fast self-reporting by the agents. In the durable goods monopoly

setting, it would be as if the monopolist cared only that buyers purchased quickly, but not

about the price.

This paper is also more distantly related to a variety of papers in dynamic contracting and

mechanism design. Krasikov, Lamba and Mettral (2020) show that unequal discounting in

a principal-agent setting with repeated trade and changing values leads to optimal contracts

with distortions that cycle over time.14 Garrett (2017) studies a setting with repeated sales

in which the buyer can arrive at a privately known random time and the seller can commit

to a mechanism for trade. The buyer’s value can change over time and the paper shows how

12In the environmental hazard setting, the authors also show that it is without loss of generality to study
mechanisms that induce immediate reporting and repair of the hazard. In the setting of this paper, the
analogue of this is true only for low return crimes.

13A natural lower bound on this incentive is that the regulator can at most offer not to punish a self-
reporting agent at all, but the model allows any arbitrary bound.

14A driving force is the tension that the more patient principal faces between backloading the agent’s payoff
to provide incentives and front-loading the agent’s payoff to take advantage of the differential discounting.
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optimal mechanisms punish buyers for late arrivals. Krasikov and Lamba (2020) studies

a dynamic contracting setting with persistent private information and financial constraints.

Similar to this paper, backloading is limited by financial constraints. Grillo and Ortner (2018)

study a related environment and show that limited liability has important implications for

the types of distortions from efficiency that arise in the optimal contract.

I The Model

A stream of criminal agents (he) decide whether to continue to operate or self-report. A

regulator (she) commits to a policy that is relevant for the agents’ decisions. Calendar time

is continuous, t ∈ R+.

A. The Agents

Arrival and Flow Gain. Infinitesimal agents arrive at constant flow rate normalized

to 1. Each agent is endowed with an individual flow gain process that follows a time-

invariant continuous-time Markov chain, denoted xt, with state space E = {xl, xh} such

that 0 ≤ xl < xh.15 For simplicity, state xl is absorbing and agents transition from state xh

to xl at constant rate λ. Upon arrival, agents are initialized in state xh.16 Index xt by time

since arrival so that x0 is the initial state of an agent upon arrival. I will refer to flow gain

xh (xl) as the high (low) state and agents with flow gain xh (xl) at some time as high (low)

types at that time.

Choice and Detection. An agent arriving at time t0 chooses a (possibly ∞-valued) stop-

ping time with respect to the filtration generated by (xt)t≥0, denoted τ — the calendar time

at which the agent stops is t0+τ . I will use the terms stopping and reporting interchangeably,

so that if an agent stops at some time t, I will also say that the agent reports (his crime)

at t. Upon stopping at calendar time t, the agent pays a penalty pt, and his flow gains

stop accruing. A deterministic path of penalties is called a penalty policy and is denoted

p = (pt)t≥0. An agent is randomly detected by the regulator after he arrives at a constant

rate, ρ, independent of (xt)t≥0. If the agent is detected, he pays the maximum penalty p and

his flow gains stop accruing.

15As in Garrett (2016), I take the “intuitive” approach to aggregating random variables over agents.
16As I detail in Section VI, this assumption can be relaxed to allow for a time-independent arrival distri-

bution across states without affecting the results.
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Payoffs. Agents discount the future at rate r. To compute an agent’s value from a stopping

time, first define

w(x, t) ≡ E
�

(a)z }| {Z t

0

e−(ρ+r)sxsds−

(b)z }| {
(1− e−(ρ+r)t)

ρ

ρ+ r
p

����x0 = x

�

where the expectation is taken with respect to the distribution of xt. This is the value of

an agent in state x who delays reporting for a deterministic length of time t, excluding the

reporting penalty after delay t. Note that λ does not explicitly appear, but rather controls

the evolution of xt. The term (a) is the accrued flow gain discounted by both time discounting

and the risk of detection. The term (b) is the agent’s expected loss from paying the penalty

if exogenously detected before choosing to stop.

An agent’s expected payoff from stopping time τ when arriving at time t0 in state x0

under penalty policy p = (pt)t≥0 is then,

W (x, t0, τ,p) ≡ E
�
w(x, τ)−

(c)z }| {
e−(ρ+r)τpτ+t0

����x0 = x

�

where the expectation is taken with respect to the distribution of xt.
17 The term (c) is the

agent’s expected loss from the penalty he pays when stopping before being detected by the

regulator. An agent arriving at t0 in state x solves the problem,

(A) W ∗(x, t0,p) ≡ sup
τ≥0

W (x, t0, τ,p).

If a policy τ achieves value W ∗(x, t0,p), it is called an optimal stopping time for the agent

who arrives at time t0 in state x. When it is clear, I suppress the dependence of W (x, t0, τ,p)

on p and write W (x, t0, τ).

B. The Regulator

Policies. The regulator commits at time 0 to a choice of the penalty policy, p = (pt)t≥0,

with pt ∈ [p, p], as well as an obedient recommendation policy as a function of calendar time

and the state, a : R+ × {xl, xh} → {0, 1}, such that inf
t≥t0

{t− t0|a(t, xt−t0) = 1} is an optimal

stopping time for an agent arriving at time t0—this stopping time is called the stopping

17Recall that in the baseline model, all agents arrive in state xh, but it is still possible to define the value
of an agent arriving in state xl.
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time induced by a for an agent arriving at t0.
18,19 I will use the notation at(x) to denote

a(t, x). Let M be the set of policies (p, a), consisting of a penalty policy p and obedient

recommendation policies a.

Payoffs. The stopping times induced by an obedient recommendation policy induce a pair

of paths, (µh
t )t≥0 and (µl

t)t≥0, equal to the mass of agents in states xh and xl at each time t,

respectively. The regulator’s payoff from a policy (p, a) is

V (p, a) ≡ −
Z ∞

0

e−rt
�
µh
t + αlµ

l
t

�
dt

where αl ≥ 0. Note that time discounting is at the same rate as the agent, r. The regulator

solves,

(P) V ∗ ≡ sup
(p,a)∈M

V (p, a)

A policy that achieves V ∗ is called optimal.20

II Preliminary Results

To arrive at an optimal policy I make three preliminary steps: (i) characterize the optimal

static policy, (ii) show that under some conditions it is without loss for the regulator’s value

to study policies in which low types always report, and (iii) characterize when dynamic

policies improve over static policies.

Static Policies. A static policy is a pair (p, a) for which the penalty, p, is constant over

time. Denote by pv = (pvt )t≥0 the penalty policy in which pvt = v for all t. A dynamic policy

is any policy which is not a static policy. An agent’s decision problem under a static policy

takes a simple form, since the policy does not exhibit any inter-temporal variation.

Proposition 1. An optimal static policy is (pp,a) where a is constant across time.

18Observe that the regulator is restricted to deterministic penalty policies—in Online Appendix F, I provide
an extension of the main result to a restricted class of Poisson random policies. Note also I have placed no
restrictions on the lower bound of pt, p, which can, for instance, be negative and represent a reward as in
the case of gun buybacks. Nevertheless, because pt will not directly affect the regulator’s value, the most
natural cases involve p ≥ 0.

19Both p and a are measurable with respect to time, t.
20An optimal policy in the class is not necessarily the optimal mechanism in a general mechanism design

approach, in which the regulator elicits reports from agents about their arrival time and returns from crime,
and tailors self-reporting policies to these reports. I focus on this restricted class of policies, time paths
for self-reporting penalties that apply uniformly to all agents, to remain as close as possible to the types of
policies implemented in practice.
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In words, an optimal static policy offers the minimium penalty possible and recommends

agents in a given state to take the same action at all times. The proof is given in Appendix D.

Intuitively, lowering the reporting penalty in a static policy strengthens the incentive to

report early, and since the regulator does not directly value the penalty, it is optimal to

choose the minimum penalty.

Low Type Screening. I show, under some conditions, that the regulator can transform

any policy into one with reporting by low types at all times, without distorting the reporting

incentives of high types. Let

τh ≡ inf
s≥t

{s− t|as(xh) = 1},

i.e. the stopping time for an agent arriving at t that follows the recommendation for high

types. Let ∆l be the difference in payoffs for low types between stopping immediately and

never, under pp, the most generous policy possible. Formally,

∆l ≡ W (xl, t0, τ
0,pp)−W (xl, t0, τ

∞,pp)

where τ 0 and τ∞ denote stopping immediately and never, respectively. Finally, let L ⊂ M
be the set of policies such that low types are recommended to stop immediately—that is,

at(x
l) = 1 for all t—and an agent arriving in state xl is indifferent between τ 0 and τh i.e.

stopping immediately and following the high type recommendation.21

The Low Type Screening Lemma, formalized and proved in Appendix A as Lemma A.2,

states that if∆l is non-negative, any policy can be transformed without loss to the regulator’s

value into a policy in L. The intuition can be illustrated by describing the transformation of

the following one-time policy: pt is set to the minimum, p, at some t = T > 0, and otherwise

is set to the maximum, p, and both high and low types are recommended to report only at

T . To transform this policy into a new one in which low types always report, replace pt at

any t smaller than T with the value to the low type of waiting until T to report. Replace pt

at any t larger than T with the value to the low type of never reporting. The positiveness of

∆l guarantees that this transformation is feasible. The new policy recommends high types

to report at T only, as in the original policy, but low types to report everywhere. For a

low type, no stopping time strictly improves over her optimal value in the original policy,

while stopping immediately delivers her optimal value in the original policy, so stopping

immediately is an optimal policy for the low type. The recommendation for high types

remains obedient, even though the new policy may have strictly lower penalty (except at T ),

because (i) the value upon transitioning to the low state is unchanged and (ii) the lowered

21Formally, W (xl, t, τ0,p) = W (xl, t, τh,p).
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penalty is never attractive to the high types, since it replicates the low type’s value from

following the high type’s recommendation in the original policy, which is no larger than the

high type’s value from following her own recommendation in the new policy.

To see the usefulness of the lemma, note that when ∆l is negative, low types prefer to

never report than to report even for the minimum possible penalty; therefore, no agent ever

reports, and so a static policy is optimal (along with every other policy). As a result, either

a static policy is optimal or the search for an optimal policy can be restricted without loss of

value for the regulator to L. The set L has useful properties: in any policy in L, low types

report everywhere and given the times at which high types report and the penalties at those

times, penalties elsewhere are pinned down by the condition that low types are indifferent

between immediately reporting and mimicking the behavior of a high type.

The Value of Dynamic Policies. Let θ denote an arbitrary parameterization of the

model.22 Recall that an optimal static policy exists by Proposition 1.

Proposition 2. The set of parameters θ for which there exists a dynamic policy that strictly

improves over an optimal static policy, denoted Θ∗, is non-empty and is characterized by:

Θ∗ =

�
θ

���� (ρ+ r + λ)∆l ≥ xh − xl > (ρ+ r)∆l

�

Observe that Θ∗ contains no parameters for which returns are perfectly persistent, i.e. λ =

0.23 The result is proved in Appendix B. The idea is straightforward: if xh − xl fails the

condition, then one of the following is true: (i) xl is so high that an agent in state xl would

never report under any policy, (ii) xh is so low that an agent in state xh would report

immediately under the optimal static policy, or (iii) xl is low enough that an agent in state

xl reports immediately in the optimal static policy, but xh is sufficiently high that an agent

in state xh would never report at any time under any policy. In any of these cases, a static

policy is optimal. Otherwise, the transformed one-time policy—described above under Low

Type Screening—strictly improves over the optimal static policy; in both the transformed

one-time and static policies, low types report everywhere, but high types report only under

the transformed one-time policy.

22That is, θ = (ρ, r,λ, xh, xl, p, p,αl)
23This is not a consequence of the assumption that agents arrive in state xh which, as I discuss in Section VI,

can be generalized at no cost to the results.
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III An Optimal Policy

To state the main result, define t∗ implicitly as the unique strictly positive value that satisfies

(I) w(xh, t∗)− e−(ρ+r)t∗p = −p

which exists whenever θ ∈ Θ∗.24 This is a one-shot incentive compatibility condition (at

equality) for the high type: the high type should be indifferent between (i) immediate

reporting for penalty p and (ii) waiting t∗ and only then reporting for penalty p.

Definition 1. A policy (p,a) such that pt0+t = pt0+t+s for all t ≥ 0, some t0 ≥ 0 and some

s > 0, such that pt0 = p is called a minimal delayed cyclical policy with period s.

The times t0 + Ns are called reset points.

Recall that for any policy in L, an agent arriving in state xl is indifferent between τ 0 and

τh, and both are optimal.

Theorem 1. If θ ∈ Θ∗, there exist a minimal delayed cyclical policy with period t∗ defined

by equation (I), denoted by (p∗,a∗), which is (i) optimal, (ii) a member of L, and (iii) has

the property

a∗t (x) = 1x=xl + 1x=xh1t is a reset point.

If θ /∈ Θ∗, a static policy is optimal.

24See Lemma C.4.
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Figure 1: An optimal policy.

The proof of the theorem is given in Appendix C which first gathers a number of preparatory

results. The path of p∗ guarantees that a low type is indifferent between immediately

reporting anywhere on this path and waiting to report until the next time at which high

types report. The delay t0 is an initial timing choice of the regulator, who is initially

unburdened by promise-keeping. The optimal policy beyond t0 is displayed in Figure 1.

To arrive at this policy, I use the Low Type Screening Lemma to solve the regulator’s

problem in two steps: step (1), optimize in the special case αl = 0 and, step (2), apply the

lemma to transform the policy from step (1) into a policy in which low types always report.

Observe that in step (1), pt can be set to p whenever at(x
h) = 0 i.e. high types are not

recommended to report—this strengthens reporting incentives for high types elsewhere and,

while it may deter reporting by low types, this does not cost the regulator since αl = 0. As

a result, in the special case of αl = 0, the policy that agrees with the policy in Theorem 1

except that between reset points, pt = p, is also optimal. The intuition for why this is optimal

can be broken into two components: (i) conditional on offering pt = p whenever at(x
h) = 1,

why is the policy optimal? (ii) why is it optimal to offer pt = p whenever at(x
h) = 1? I

describe intuition for each of these.

For (i), since pt = p when high types are not recommended to report and pt = p otherwise,

the only choice left for the regulator is how frequently to offer p, with the constraint that

high types find it optimal to report at such times. To satisfy the constraint, the offers of

pt = p must be sufficiently separated in time, otherwise high types prefer to delay reporting
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until they become low types—they would only need to incur the risk of detection while in the

low state for a short period of time before an opportunity for pt = p arrives. But, conditional

on satisfying the constraint, the regulator prefers the delay between offers of pt = p to be as

short as possible—the shorter the delay, the quicker criminals stop committing crime after

arriving. As a result, the solution to the first step, constrained to policies that take value

pt ∈ {p, p}, is to offer the minimum punishment as frequently as possible without violating

the incentive constraints of high types—this frequency is t∗ as defined by eq. (I).

Point (ii) is more subtle, and it is useful to briefly describe the approach to the proof.

The proof of the theorem proceeds by first writing the regulator’s problem recursively, with

decision nodes as the times at which high types report, state as the penalty that must be

offered immediately, choices as (a) the delay until the next decision node and (b) the penalty

at that time (which becomes the state at the next decision node) and finally a constraint

that agents must prefer to report immediately rather than wait until the next decision

node and report then. There are many different choices the regulator can make, given the

state, that would satisfy the constraint at equality. The constraint forces the regulator to

make the following trade-off.25 Increasing the penalty at the next node introduces slack

into the constraint, so the regulator can then decrease delay until the constraint becomes

tight, which is valuable for the regulator who prefers crime stops as quickly as possible; but,

at the next decision node, the state (i.e., penalty the regulator must incentivize agents to

accept) is now higher, and this shrinks the set of choices available because the constraint

at that node becomes harder to satisfy (it is harder to incentivize agents to report for a

higher penalty). To satisfy the constraint at the next decision node, the regulator may again

opt to offer a short delay to the decision node after that, but this requires an even higher

subsequent penalty, further constraining her available policies. A sequence of short delays

must eventually end with a long delay—short delays require increasing penalties and since

penalties are bounded above, this cannot continue indefinitely and eventually the only way

to satisfy the constraint is to use a long period with the maximum punishment for reporting,

which induces no reporting. This highlights the trade-off the regulator faces: using short

delays creates short-term gains but comes with long-term losses—eventually, the only way

to satisfy the constraint is to commit to a long period of time with no reporting, which is

costly both for agents and the regulator.

With the recursive structure in mind, a strong form of point (ii) is: for any state, it is

optimal to choose the next penalty to be p, and the shortest possible delay that satisfies the

constraint. A backloading motive for the regulator is the driving force behind this result.

In particular, at each decision node, the agent discounts payoffs at the next decision node

25For the purposes of intuition, some subtleties are ignored.
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not only by time discounting, as does the regulator, but also by the risk of detection, which

acts like additional time discounting. The regulator, on the other hand, always faces a new

group of agents at the next decision node, and so incurs no such additional discounting.

This effectively makes agents less patient than the regulator. Intuitively then, using short

delays to and high penalties at the next decision node—which creates short-term gains but

long-term losses—is never optimal, and the regulator instead prefers to incentivize reporting

with long delays to and low penalties at the next decision node. Combining this with the

result that delay longer than the shortest necessary to satisfy the constraint at equality is

never optimal, it is optimal in any state to choose the next penalty to be p, and the shortest

possible delay that satisfies the constraint at equality.26

So for step (1) (αl = 0), combining points (i) and (ii) shows that a policy identical to

that in Theorem 1, except that between reset points pt = p, is optimal. For the general case

of αl ≥ 0, applying the transformation in the Low Type Screening Lemma delivers the form

of the optimal policy in Theorem 1 (step (2)), with penalties decreasing along each cycle.

IV Comparative Statics

It is immediate from Theorem 1 that on the interior of Θ∗, the frequency of cycles increases

in the risk of detection (ρ), the maximum penalty (p) and the rate of transition from high to

low return crime (λ). When the regulator can increase ρ or p, the regulator can also increase

the frequency with which high types self-report in the optimal policy. This highlights the

complementarities between investment in features of the enforcement environment and the

use of amnesty, in the presence of dynamic returns from crime.

While a more general analysis would allow the regulator to choose enforcement efforts

jointly with amnesty, the comparative statics nevertheless provide useful insight. In some

settings, the regulator may only be able to imperfectly affect the risk of detection; in the

case of cartels or desertion during war, much of detection comes from third-parties reporting

to the regulator. While the regulator can affect the incentives of third-parties to report,

this is less tightly controlled than in the case of, for instance, environmental inspections.27,28

Alternatively, one can view the results as the second step of a simplified two-step policy-

making process: choose a uniform level of detection and punishment, then an amnesty policy.

26The backloading motive is further clarified in Online Appendix G, where I extend the model to allow
agents to arrive at a time-inhomogeneous rate.

27As in Wang, Sun and de Véricourt (2016).
28For instance, a large share of detection of price-setting cartels comes from buyer complaints which the

anti-trust authorities do not directly control (Harrington, 2005). In the case of the anti-desertion campaigns
in the Red Army, enforcement was locally delegated but deserters could be caught anywhere or discovered
by people other than those tasked with explicit enforcement (Wright, 2012).
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V Applications

In this section, I discuss an application of the model to military desertion and detail a case

of amnesties during the Russian Civil War. Afterwards, I discuss the model’s implications

for tax amnesties and gun buybacks and amnesties.

A. Desertion

From 1919 to 1920 alone, the Red Army’s Central Anti-Desertion Commission recorded

over 2.6 million deserters, nearly equal to the number of new recruits over the same period

(Figes, 1990). During the Vietnam War, over 400,000 soldiers deserted. The war minister of

Napoleonic Italy declared desertion “the first and principal obstacle to the organization of

the army of the Kingdom” (Grab, 1995, p. 37).

Desertion amnesties are often offered during the course of war to entice return and have

been applied extensively across history.29 The Red Army created its anti-desertion commis-

sion in 1918—it increased punishments, strengthened enforcement (for instance, dispatching

armed groups to search for deserters) and implemented periodic amnesties to entice deserters

back to their units (Wright, 2012). As noted in Figes (1990, p. 206), “...the most successful

means of combating desertion [in the Red Army] were the amnesty weeks.” Surrounding the

Argentine War of Independence, the military engaged in “alternating carrot and stick,” offer-

ing amnesties to deserters in December 1813, September 1815, and September 1821 (Slatta,

1980, p. 461). In Napoleonic Italy, “the government’s repressive policy was mitigated by

frequent amnesties designed to entice deserters and draft dodgers back to the army” (Grab,

1995, p. 48). French Militaries in the 18th and 19th centuries offered periodic amnesties

“interspersed with periods of severe repression, in an attempt to lure waverers back to their

units” (Forrest, 1989, p. 213).

The difficulties that a deserter faces can change over time, and this provides the basis for

the dynamic returns modeled in this paper. Forrest (1989) provides, among other things,

an account of the uncertain conditions of desertion in France in the early 19th century.

Under such circumstance, Forrest (1989) (p. 102) remarks, “[I]t is hardly surprising that

considerable numbers of deserters changed their minds.”

A.1 The Red Army and the Anti-Desertion Commission

In this section, I argue that the model’s basic forces can rationalize the use of intermittent

amnesty for deserters from the Red Army during the Russian Civil War.

29In contrast to desertion amnesties offered after a war, as a method of reconciliation and forgiveness.
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Wright (2012) offers an account of the anti-desertion effort in the Red Army during the

years 1918-1920, along with a detailed case study of the anti-desertion experience in Karelia.

As noted in the case study (p. 145), historians have deemed material shortages—‘uniforms,

linen, tea, tobacco, and soap’—a primary reason for mass desertion during the Russian Civil

War. Other important factors were the intensity of fighting, proximity to the White Army,

and seasonality.30 In response to the mass desertion problem, the Red Army created the

Central Anti-Desertion Commission in December 1918. In June 1919, after an organizational

period, the military introduced the use of periodic amnesties. During the months June to

October 1919, multiple time-limited amnesty periods were offered, alongside harsh repression.

The amnesties allowed deserters to reenter the military with no repercussions.

The model provides one lens through which to view the use of repeated, time-limited

amnesties—by repeatedly offering an amnesty for only a short window, the anti-desertion

program balanced two issues: (i) that deserters would not report under a permanently offered

amnesty unless their conditions became unbearable and (ii) that offering the program just

once would ignore many deserters who would eventually be willing to re-enter the ranks.

The application of amnesties, in this form, appeared to be a deliberate choice, rather than

indecision—as noted in Rendle (2014, p. 474), “One contemporary later argued that am-

nesties could have a significant impact as long as they were introduced when deserters were

receptive, were not too frequent, and were applied alongside repression.” Newspaper ads

stressed the time-limited nature of the amnesty, apparently in order to encourage deserters’

return. The following is an extract of a newspaper publication described in Wright (2012,

p. 154): ‘Deserters, townspeople! Today is the last day to appear before the [anti-desertion]

commission. Hurry; present yourself today as tomorrow will be too late!’.

Undoubtedly, understanding the overall amnesty-granting decision requires understand-

ing the relationship between the military, its personnel and the population. As discussed in

Wright (2012), the Red Army’s overall decision to apply amnesty can be seen both as a way

of recovering manpower and as a way of striking a balance between repression and restraint

in a bid to win the support of the peasantry (which naturally included family members of

deserters). Nevertheless, this paper develops a formal model with a force, echoed in qualit-

ative evidence from the period, that drives towards the particular form that amnesty took,

as a response to the uncertainty and variation in the life of a deserter. It is instructive to

consider other explanations for intermittent amnesties.

Public Variation. Aside from the idiosyncratic variation in a deserter’s plight as described

above, some of the most important time-varying factors were the advances of the White

30For instance, soldiers returned home to sow their fields.

17



army and the harvest season. Deserters often returned at the end of their harvests, which

is responsible for the success of some amnesties (Wright, 2012). A theory based on a public

end to the harvest season would be able to account for annual amnesties, but even at a

relatively small regional level, amnesties were more frequent — Wright (2012) describes

periodic amnesty weeks during the June-October 1919 period in the Karelia region, so more

fine-grained events or a more fine-grained theory, such as the one provided in this paper, is

necessary to explain the structure of these amnesties.

Discouraging Desertion. A natural guess is that amnesties should be sufficiently infre-

quent in order to discourage desertion. To think formally through this possibility, consider

a version of the model of this paper with λ = 0 (perfect persistence) but when agents arrive

to the model, they make a decision whether to desert (and cannot delay desertion). In this

case, the optimal policy offers no amnesty, fully punishing any self-reporter. The reason is

that under such a policy, an agent who arrives to the model faces a “one-time amnesty”: by

not deserting, they receive no punishment, but if they desert they never have a chance at

amnesty. Since the value to deserting is constant, an agent who chooses to desert under this

policy can never be induced to report.

Although the model is simple, it highlights the reason that an explanation based purely

on discouraging desertion is insufficient. When a deserter deserts, they have revealed that

unless their or the military’s situation changes, they would not accept an amnesty since

they could have avoided punishment altogether by not deserting in the first place. For

discouraging desertion to be an important determinant of the decision to offer intermittent

amnesty, it must be coupled with another force such as the one in this paper.31

B. Gun Amnesties and Buybacks

Gun amnesties and buybacks can potentially be improved by taking into account the dynamic

considerations of illegal gun owners. A typical gun amnesty program commits to a ‘no-

questions’ asked acceptance of illegally owned firearms, freeing participants from the risks

of illegal gun ownership.32 Buy-back programs go one step further, offering to pay for each

firearm surrendered. During the Argentine buyback of 2007-08, the government collected

more than 100,000 weapons (Lenis, Ronconi and Schargrodsky, 2010). During the Brazilian

31An alternative possibility is that public pressure to forgive deserters grows with the mass of deserters
and amnesty is then held whenever the mass of deserters is large enough and hence the benefit of amnesty
(releasing public pressure) outweighs its cost (encouraging desertion). It is not clear though, given the short
time period during which amnesties were held, that public pressure could respond so quickly to make this a
reasonable explanation.

32The exact content of ‘no-questions’ asked varies from program to program.
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buy-backs of 2003, 2009 and 2011, the government collected more than 1 million weapons.33

When operated on a small scale, the evidence, especially in the U.S., points to the lack of

any effect of gun buybacks on gun violence (Plotkin, 1996). On a large scale, however, these

programs can potentially be effective (Lenis, Ronconi and Schargrodsky (2010), Macinko

et al. (2007)), especially when coupled with changes to the enforcement environment.

The inter-temporal properties of these programs vary considerably. Brazil, for instance,

has operated a temporary buyback program four times since 2003. Sweden operated tem-

porary amnesty programs in 2007, 2013 and 2018. Mexico operates a permanent buyback

program through its Secretariat of Defense (SEDENA). Tasmania has operated a permanent

amnesty program for years and all of Australia began to do so in 2021. Denmark operates

regular, periodic amnesties, which have been run in 2009, 2013 and 2017. The Africa Union

(AU) Assembly declared in Decision 645 (XXIX) that each September from 2017 to 2020

would be “Africa Amnesty Month”, in which weapons could be turned in without any risk

of punishment. In many cases, short-term gun buybacks are operated when public support

is strong (e.g. after a tragedy) or when private funding is available (Plotkin, 1996).

The model in this paper explores one reason why the intermittent nature of some pro-

grams can be an advantage and how one can improve the design of programs that are offered

continuously, such as Mexico’s gun buyback program. When the option value of particip-

ating in a gun-amnesty or buy-back is a first-order concern, the optimal policy induces

self-reporting by agents with low returns from gun ownership at all times, but induces self-

reporting by agents with high returns from gun ownership only intermittently. When instead

this option value is not first-order, a static policy is optimal.34

C. Voluntary Disclosure and Tax Amnesty Programs

In this section, I argue that the forces of the model are present in voluntary disclosure and

tax amnesty programs, and that intermittent amnesties, while more likely driven by other

considerations—lack of commitment, short-term revenue considerations, political cycles—

have benefits when compared to more permanent disclosure programs which have sometimes

been implemented.

Tax amnesty is ubiquitous.35 The use of tax amnesty is controversial, despite its preval-

33https://www.gunpolicy.org/firearms/region/brazil
34It must be noted that the change in value cannot come from a malfunction in the gun itself. As shown

in Mullin (2001), such a change in value will lead gun owners to turn their gun in during a buy-back only to
turn around and use the money to buy a new gun.

35Modern tax authorities have repeatedly implemented tax amnesties and voluntary disclosure programs
including in the United States, Germany, Italy, India, the Phillipines, and Spain. Since 1980, more than 40
U.S. states have implemented a tax amnesty and more than 20 have implemented three or more (Mikesell
and Ross, 2012).
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ence (Le Borgne and Baer, 2008). While programs that reduce the original tax amount often

fail to deliver benefits exceeding costs, voluntary disclosure programs which offer reductions

of penalties and interest and protection from prosecution can provide substantial benefits

(OECD, 2015). In the model, such a constraint is best implemented by imposing p > 0,

representing the negative long-run effects on compliance and morale of programs which are

too generous to evaders.

While tax amnesties are often offered to raise revenue in the short-term, they are also

used to increase compliance in the medium and long-term, the view taken in the model of this

paper.36 A basic question relevant for examining tax amnesties and voluntarily disclosure

programs is, why do people apply? Although direct evidence regarding motivation is not

widely available, one source of evidence on this question comes from Ritsema, Thomas and

Ferrier (2003), who implemented a survey of participants in the 2003 Arkansas tax amnesty

program. Income, ease of evasion and inability to pay were three important determinants

in the decision to evade taxes. In any setting in which these factors vary substantially over

time, the model can speak to the design of voluntary disclosure programs.

As detailed in OECD (2015), there are many examples of both permanent and temporary

but repeated tax amnesties and disclosure programs. Within the literature on tax evasion,

the use of repeated, temporary amnesties has been a subject of some theoretical investiga-

tion. Marchese and Cassone (2000) rationalizes repeated tax amnesties as the tax authority

price discriminating between taxpayers who are ex-ante heterogeneous in their value for for

avoiding sanctions (there are two types: compliance-prone and evasion-prone) — types are

static, regulatory preferences are to maximize revenue, and the intuition provided for periodic

amnesty is similar to the use of periodic discounts by a monopolist seeking to occasionally

entice low value buyers to purchase the product. The setting studied in this paper is different

— types are dynamic, the regulator cares about stopping crime as quickly as possible, and

the dynamics in amnesty are used to ensure criminals do not delay reporting, which they

do only because their types are dynamic. In the model of this paper, when types are static,

optimal amnesty is static. Although the model in the present paper abstracts from import-

ant features of tax evasion and collection (importantly, by assuming that the regulator does

not care about collected penalties), it offers a new take on the relative value of permanent

versus repeated, temporary programs, focusing on how such programs reinstate those who

have already decided to evade. In this context, when the value to evasion is persistent but

changes over time, it is sub-optimal to offer a static program and a cyclical program can

provide stronger incentives for agents to self-report.

36See Le Borgne and Baer (2008), Luitel and Tosun (2014), and OECD (2015).

20



VI Discussion and Extensions

In this section, I provide interpretation and discussion of the assumptions in the model. I also

detail some extensions and alternative modeling choices, as well as the model’s limitations.

Deterrence. The model ignores the decision to become a criminal—criminals arrive crim-

inals. Consider instead a setting identical to the one presented in Section I, except that

agents make a once-and-for-all decision whether to begin committing crime at the moment

they arrive to the model. The optimal policy in this case is to either never offer amnesty

or offer static amnesty that induces reporting by low types only. The reason is that never

offering amnesty effectively gives an agent a “once-and-for-all” opportunity to avoid punish-

ment at the moment of arrival by not engaging in crime. If such a policy deters high types,

then the regulator achieves her first-best. If instead high types begin committing crime then

there is no policy that can induce reporting by high types. As a result, the regulator focuses

her policy on inducing low types to report, which can be accomplished with a static policy.

To jointly study deterrence and amnesty then, it is necessary to enrich the model. Sup-

pose agents arrive in a third, very high state, at which point they choose whether to become

criminals. If this third state is sufficiently high, and transition from this state to the lower

states is irreversible, then the results of Section II remain unchanged. A more satisfactory

model with deterrence would allow agents to arrive in multiple states and decide whether

to become criminals; agents arriving in the highest states cannot be deterred, while agents

arriving in the intermediate or low states can be. In such a model, an optimal policy will

trade off deterrence and ex-post detection via self-reporting. When the main motivation is

deterrence, self-reporting policies will be counter-productive. When the main motivation is

ex-post detection, self-reporting policies like the ones studied in this paper will be useful.

Arrival Time. Amnesty policies are valuable when the enforcement environment is too

weak to fully deter crime. In light of this, arrival to the model can be interpreted as the

time at which returns from crime have fallen far enough, relative to their initial level when

the agent began committing crime, to consider reporting. In some cases, like gun amnesty

and buybacks, the regulator has no information on the time at which crime began, and

so cannot directly make use of arrival time.37 But in some settings, the time criminals

begin committing crime is perfectly observed. Though in many such settings amnesties are

not conditioned on the time at which crime began, it is instructive to consider a variation

37Though, as previously mentioned, in a more general mechanism design approach, the principal may be
able to elicit arrival time information.

21



of the model:38 the regulator chooses a time path for amnesty conditional on the time of

initial commission of the crime, crime is initiated in a third, very high state, and the agent

cannot be deterred by any policy. This last condition is a reflection of the weak enforcement

environment. At some Poisson rate the agent transitions from the very high state to the high

state and never returns. The regulator does not observe the transition time from the very

high state to the high state. This version of the model is equivalent to the model described in

Online Appendix G, in which the arrival distribution of agents is generalized, and so results

from there can be applied to show that when transition from the very high to the high state

is not too fast, a cyclical policy is optimal.39

Initial Distribution of Values. Agents arrive in state xh. Results are unchanged if I

allow for a time-independent distribution of arriving values across xh and xl, since an optimal

policy induces low types to report either always or never.

Value of Penalties. The regulator’s objective function attaches a value of zero to penalties

i.e. pt for self-reporters and p for those detected. In some cases, like tax amnesty, this is

an important omission; to incorporate revenue considerations, generalize the regulator’s

objective function to be a weighted combination of the loss from crime (xt) and the profit

from penalties. Weights are context specific e.g. in the case of tax amnesty, the weight

is positive but should account for the cost of collecting penalties and proving guilt, which

is administratively expensive (Franzoni, 1996). Although the proof of Theorem 1 does not

generalize to such settings, the main force at work remains intact.

In the case of desertion, one of the main methods of punishment is prison time. Militaries

have found ways of preserving manpower while still imposing punishment, such as random

punishment (Becker (1968), Chen et al. (2020)), postponing prison sentences until after a

war, relegating deserters to the worst duties, organizing penal battalions, and others. Never-

theless, a natural variation of the model would introduce a loss from imposing punishment,

since by imprisoning a deserter, the military sacrifices manpower. The fundamental force of

the paper is therefore strengthened in this context. This extension complicates the analysis

and how it affects the results is left as an open question.

A related point concerns the inability of the regulator in the model to break the lower

bound on p by using funds to pay criminals to stop. For instance, the regulator may be able

38In the Russian Civil War, I am not aware of evidence to suggest the Red Army’s desertion amnesties
restricted the application of amnesty by desertion date. In other desertion settings, there have been such
restrictions, but they appear rare and often extend years in the past (such as the Sri Lankan desertion
amnesty of 2008, which extended to all who deserted after 2005).

39Online Appendix G also characterizes an optimal policy (which takes a different form) when the transition
from the very high to the high state is fast.
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to set any penalty p ∈ [p, p] at no cost, but can set p < p by making a transfer to a criminal

who self-reports and stops—this transfer then enters somehow into the regulator’s payoff.

The effect of this extension will depend on the weight the regulator places on the loss from

crime—for small enough weight, using payments will not be profitable. In some settings,

such as desertion, there are rarely instances in which the military pays deserters to return.40

The regulator may not have funds and be unable to borrow. In other settings, there are

payments, but the relevant constraints on payment may be forces outside the model—for

instance, payments in gun buybacks should not be so large as to entice people to buy guns

only to immediately turn them in during a buyback.41 Nevertheless, this extension would

be valuable, and there will exist a large enough weight on the loss from crime that cyclical

policies that use transfers at the end of each cycle to shorten the length of cycles will improve

over policies without transfers. An analysis of optimal amnesty in this case is left to future

work.

Quitting. One of the real-life features motivating the model is that certain aspects of

crime are irreversible without approval from the authority, like desertion. Nevertheless, it

is interesting to think about a case in which an agent is given an option to “quit” without

self-reporting, which is important in cases like gun amnesties and buybacks. When quitting

is not free (e.g. because it is still risky to dispose of an illegal gun or hide it in a home where

it may be mishandled), then the results in the paper continue to apply, except the regulator

is limited in how high a penalty she can entice a criminal to accept. When quitting is free,

there is no role for amnesty when p ≥ 0 because an agent always weakly prefers to quit

rather than self-report. When instead p < 0, i.e. a buyback is feasible, and the basic forces

remain.

Increasing Penalties. In the model, maximum penalties do not increase with the severity

of the crime. In many cases, there are upper bounds on the severity of penalties. For

instance, in the case of desertion, the military may be unable to credibly commit to frequent

executions, since the legitimacy of its campaign relies on public support.42 In other cases,

like illegal gun ownership, the regulator has no information on when the crime began.

Absorbing Low State. The model does not allow for the possibility that agents in the low

state transition to the high state. This assumption is made for tractability. The Low Type

Screening Lemma generalizes to this case, so a policy similar to the policy in Theorem 1 is

40This may be because it would encourage desertion or harm morale, forces excluded from the model.
41See Plotkin (1996) on the 1991 St. Louis gun buyback.
42See, for instance, the support of the peasantry during the Russian Civil War discussed in Wright (2012).
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approximately optimal when transitions to the high state are infrequent, with the maximum

loss possible as compared to the optimal policy shrinking with the size of the transition rate.

Relationship to Garrett (2016). I detail here the main technical difference to the most

closely related paper, Garrett (2016). The paper studies a monopolist choosing a price path

for randomly arriving buyers who can have either high value for the product (analogue of

low returns to crime) or low value for the product (analogue of high returns to crime),

and can transition between these states. To make the parallel clear, let an allocation be

the times at which the good is purchased by low value buyers in the monopoly setting, or

the times at which high types report in the regulatory setting of this paper. Key to the

solution method in the monopoly setting is that the monopolist’s problem is separable: at

any point in time at which low value buyers are allocated the good, the optimal choice of

future allocations is independent of the history of allocations. In contrast, in the regulatory

setting, the regulator’s problem is not separable; at any point in time at which high types

report, the optimal continuation policy depends on history—this dependence is summarized

in the penalty offered for reporting at that time. The resulting dynamic program requires

tracking this penalty as a state variable, and solving it requires a detailed verification of the

proposed optimal policy.

To see why one problem is separable and the other is not, note that in the monopolist’s

problem, any allocation can be implemented by some price path. The monopolist’s problem

is then formulated as an unconstrained choice of allocation, given an optimal price path that

implements it.43 So, the history of allocations does not impose any feasibility constraints

on future allocations. In contrast, in the regulatory setting, the optimal allocation would

always be R+ if not for the bound on penalties. The bound on penalties must therefore be

explicitly incorporated as a constraint in the regulator’s problem, through which the history

of allocations constrains future allocations. The solution to the regulator’s problem reflects

the interaction of the backloading motive with the bound on penalties.

Note that Garrett (2016) does not require either state to be absorbing, in contrast to

this paper. This is a result of the solution method, as well as the difference in preferences.44

43A minor point is that negative prices are required to implement some allocations. In the monopolist’s
problem however, non-negativity constraints on prices can be ignored, so that the problem behaves as if any
allocation is feasible. Indeed, this problem always results in non-negative optimal prices.

44More precisely, I show that when the regulator’s problem is recursively formulated, there is a linear
relationship between (i) the difference in the regulator’s value between the proposed optimal policy and a
deviation from the proposed optimal policy between any two decision nodes, and (ii) the difference in an
agent’s gains from crime between the proposed optimal policy and the deviation from the proposed optimal
policy between the same two decision nodes. This linearity facilitates the verification of the proposed optimal
policy, but no longer holds once agents can transition from low to high return crime.
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Intermediate Amnesty. In some settings, one may observe that amnesty is offered either

not at all, or as a full reduction of penalties—that is, intermediate levels of amnesty are not

explicitly offered. It would be natural that a regulator treats criminals who reports their

crime to the regulator in between amnesties more leniently than those who are detected, but

less leniently than those who report during amnesties.45

In other settings, there may be a permanent program that reduces penalties below those

imposed when the criminal is detected, interspersed with more generous short-term programs

(see OECD (2015) for U.S. offshore compliance, or the permanent provision in the Swedish

Weapons Act combined with periodic, more generous amnesties (Hofverberg, 2018)).

VII Conclusion

In this paper, I studied the problem of a regulator who designs amnesty programs to induce

self-reporting of crime. I show (Proposition 2) that when the returns from crime can change

over time (λ > 0), the generosity of an optimal amnesty program may change over time as

well. In such cases, Theorem 1 establishes that a cyclical policy is optimal and describes

its form. After an initial period, the minimum possible penalty for reporting (p) is offered

at evenly spaced points in time. In between such times, a decreasing schedule of penalties

is offered. Agents with a high return from crime report only at the end of each cycle while

agents with a low return from crime report at all times. A backloading motive on the part of

the regulator drives the optimality of this form of amnesty. Agents discount more than the

regulator across reporting times of high types; both agents and the regulator time discount,

but agents also discount by the risk of detection. The regulator therefore finds it optimal

to incentivize reporting by high types at a given time by committing the next amnesty to

be the minimum penalty possible with the minimum delay necessary to satisfy incentive

constraints.

There are a number of avenues for future work. First, it would be useful to study a version

of the problem in which the regulator can control the risk of detection. Second, new insights

might result from incorporating political economy constraints. Third, the time-homogeneous

risk of detection is unrealistic in some cases—a larger stock of past crimes changes the risk

of detection and criminals become better at evading detection over time—and relaxing this

could be a fruitful direction. Finally, it would be interesting to further examine the deterrence

margin. For instance, when the regulator cannot condition her policy on the time at which

45Evidence for this, at least in the case of desertion, is scant, possibly due to the informal nature of the
arrangement. In the case of desertion, there may be a period of time immediately after desertion during
which, if the deserter turns themselves in, they will be treated leniently relative to those who remain deserters
for longer. How this interacts with formal desertion amnesties is unclear.
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crime begins, randomization becomes clearly useful — by randomizing the timing of amnesty,

agents cannot take advantage by initiating crime at times close to attractive amnesties. In

that case, how should the regulator randomize amnesty?
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Appendix

A Low Type Screening Lemma

Lemma A.1. For any parameterization (ρ, r,λ, xh, xl, p, p,αl),

∆l =
ρp− xl

ρ+ r
− p.(A.1)

Lemma A.2 (Low Type Screening Lemma). Suppose 0 ≤ ∆l. Then, for any policy (p, a) ∈
M, there is another policy (p̃, ã) ∈ L s.t. at(x

h) = ãt(x
h).

Proof. Fix a policy (p, a) ∈ M. Observe first that the alternative policy (p̃, ã) defined by

(i) ãt(x
h) ≡ at(x

h), (ii) ãt(x
l) ≡ ãt(x

h) and, (iii) p̃t ≡
�
1at(xh)=1

�
pt + (1− 1at(xh)=1)p is an

element of M such that at(x
h) = ãt(x

h). So, to prove the result, it is sufficient to show that

for any policy (p, a) with at(x
h) = at(x

l) and pt = p if at(x
h) = 0, there is a policy (p̃, ã) ∈ L

such that at(x
h) = ãt(x

h). To this end, fix such a policy (p, a) and consider the alternative

policy, (p̃, ã), defined by (i) ãt(x
l) ≡ 1, (ii) ãt(x

h) ≡ at(x
h) and (iii) p̃t ≡ −W ∗(xl, t,p).

The definition of W ∗ and the assumption that 0 ≤ ∆l =
ρp−(ρ+r)p−xl

ρ+r
implies that p̃t ∈

[p, p], where I have plugged in equation (A.1) for ∆l.

First, I argue that p̃ is measurable. Let τh(t) ≡ inf
s≥t

�
s− t

��ãs(xh) = 1
	
. Observe that

τh(t) is measurable in t since ã is, and that

p̃t = −W ∗(xl, t,p) =
xl − ρp

ρ+ r
(1− e−(ρ+r)τh(t))− e−(ρ+r)τh(t)pt+τh(t)

which is measurable in t since τh(t) is.

Second, I argue that the recommendation policy ã is obedient.46 Fix an arbitrary stopping

46Observe that τ ã = inf
t≥t0

{t− t0|ãt(xt−t0) = 1} is indeed a stopping time since ã is measurable.
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time τ for an agent arriving at time t. Let σ ≡ τ1aτ (xh)=0 +∞(1− 1aτ (xh)=0). Then,

W (x, t, τ, p̃) = E

"
w(x, τ) + e−(ρ+r)τW ∗(xl, τ,p)

#

= E

"
w(x, τ ∧ σ)− e−(ρ+r)(τ∧σ) �1τ<σpτ − 1σ≤τW

∗(xl, σ,p)
�
#

≤ E

"
w(x, τ ∧ σ)− e−(ρ+r)(τ∧σ) (1τ<σpτ − 1σ≤τW

∗(xσ, σ,p))

#

≤ W ∗(x, t,p)

where the third line follows from xl ≤ xσ. Conversely, if an agent arriving at time t uses

stopping time τh = inf
s≥t

{s − t|as(xh) = 1}, the agent guarantees himself W ∗(x, t,p).47 So

I conclude that W ∗(x, t,p) = W ∗(x, t, p̃) for x ∈ {xh, xl}. As a result, ã is an obedient

recommendation policy with ãt(x
l) = 1 ∀t andW ∗(xl, t, p̃) = W (xl, t, τ 0, p̃) = W (xl, t, τh, p̃).

B Proof of Proposition 2 (and 2 preliminary results)

Lemma B.1. If (ρ+ r + λ)∆l < xh − xl or xh − xl ≤ (ρ+ r)∆l, a static policy is optimal.

Proof. By Proposition 1, we can constrain to static policies with obedient recommendation

policies a that give the agent the maximum of (i) τ 0 ≡ 0, (ii) τ∞ ≡ ∞ and (iii) τ l ≡
inf
t≥t0

{t − t0|xt−t0 = xl} (for an agent arriving at t0). The values under penalty policy pp of

τ 0, τ l and τ∞ for an agent arriving at t0 in state x are

W l(x) ≡ W (x, t0, τ
l,pp) = Ex0=x

h
w(x, t0)− e−(ρ+r)τ lp

i
= 1x=xh

 
xh − ρp− λp

ρ+ r + λ

!
+ 1x=xl(−p)

W 0(x) ≡ W (x, t0, τ
0,pp) = −p

W∞(x) ≡ W (x, t0, τ
∞,pp) = 1x=xh

�
xh − xl

ρ+ r + λ

�
− ρp− xl

ρ+ r

Suppose first that xh−xl ≤ (ρ+r)∆l. Then, max{W∞(x),W l(x)} ≤ W 0(x) for x ∈ {xh, xl}.
As a result, the regulator achieves her highest feasible value, V ∗ = 0, with the static policy

(pp, a) such that at(x) = 1 for all (t, x) ∈ R+ × {xh, xl}.
47This follows from the fact that the original policy a is obedient and I argued that it is without loss to

restrict to policies a with the property that at(x
h) = at(x

l).
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Suppose now that xh − xl > (ρ+ r + λ)∆l. The agent’s value for τ∞ when x = xh is

W∞(xh) =
xh − xl

ρ+ r + λ
− ρp− xl

ρ+ r
=

xh − xl

ρ+ r + λ
− (p+∆l) > −p ≥ W 0(xh)

for any p, where the second equality follows by plugging in equation (A.1) and the first

inequality follows by our assumption xh−xl > (ρ+ r+λ)∆l. Since the value of τ
∞ is larger

than the value of τ 0 for penalty p, any obedient recommendation policy must have at(x
h) = 0

for all t. In this case, I claim that the static penalty policy pp is optimal. If ∆l ≥ 0, then

max{W∞(xl),W l(xl)} ≤ W 0(xl) and at(x) = 1x=xl
for all t is obedient for pp. If instead

∆l < 0, then W∞(xl) > −p. Since W∞(xl) = W (xl, τ∞, t0,p
p) is independent of the penalty

policy and p is the minimum penalty, at(x) = 0 is the only obedient recommendation for all

penalty policies, so any penalty policy is optimal.

Before proving Proposition 2, I prove an intermediate result when xl = αl = 0. Define48

eΘ ≡
�
(ρ, r,λ, xh, 0, p, p, 0)

����
ρ+ r + λ

ρ+ r

�
ρp− (ρ+ r)p

�
≥ xh > ρp− (ρ+ r)p

�
.

Proposition B.1. Θ∗ ∩ {θ|xl = αl = 0} = Θ̃.

Proof. First, note that Lemma B.1 implies (using equation (A.1)) that Θ∗ ∩ {θ|xl = αl =

0} ⊆ eΘ. I show the reverse inclusion, eΘ ⊆ Θ∗ ∩ {θ|xl = αl = 0}. Fix an arbitrary θ ∈ eΘ. By

Proposition 1 it is sufficient to demonstrate a policy that strictly improves over pp. Observe,

W (xh, t0, τ
l,pp)−W (xh, t0, τ

0,pp) =
xh − ρp− λp

ρ+ r + λ
+ p > 0

where the inequality follows by the assumption that θ ∈ eΘ. In this case then, the regulator

receives her worst possible payoff; no agent ever reports until reaching the low state xl = 0.

Thus, to conclude the proof it is sufficient to demonstrate a policy which induces a positive

mass of high types to report. Consider a one-time policy (p, a): (i) pt = (1t=T ) p+(1−1t=T )p

for some T > 0, (ii) at(x) = 1t=T for each x ∈ {xh, xl}. Then, observe that,

W (xh, T, τ∞,p) =
xh

ρ+ r + λ
− ρp

ρ+ r
≤ −p = W (xh, T, τ 0,p)

where the inequality follows by assumption that θ ∈ eΘ. Thus, the recommendation at(x) =

1t=T is obedient. Since T > 0, this policy induces a strictly positive mass of high types to

stop by T , generating a strict improvement of the regulator’s value over any static policy.

Therefore, eΘ ⊆ Θ∗ ∩ {θ|xl = αl = 0} and combining with the reverse inclusion completes

the proof.

48Recall, Θ∗ is the set of parameters for which dynamic policies improve over an optimal static policy.
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Proof of Proposition 2: Suppose now that xl > 0 or αl > 0. If ∆l < 0, then Lemma B.1

implies that Θ∗ ∩ {θ|∆l < 0} = ∅. Suppose instead that ∆l ≥ 0. By Lemma A.2,

V ∗ = sup
(p,a)∈M

V (p, a) = sup
(p,a)∈L

V (p, a).

Since the right hand side is independent of αl, it is wlog to prove the result for αl = 0. To this

end, for any θ = (ρ, r,λ, p, p, xh, xl, 0), let eθ(θ) ≡ (ρ, r,λ,ep, p, exh, exl, 0) where exh = xh − xl,

exl = 0 and ep = p− xl

ρ
(note that ep ≥ p since ∆l ≥ 0). An agent’s value for stopping time τ

can then be re-written,

W (x, t0, τ,p) = E




τZ

0

e−(ρ+r)txtdt− (1− e−(ρ+r)τ )
ρ

ρ+ r
p− e−(ρ+r)τpτ+t0




= E




τ∧τlZ

0

e−(ρ+r)t(xh − xl)dt+

τZ

0

e−(ρ+r)t(xl)dt− (1− e−(ρ+r)τ )
ρ

ρ+ r
p− e−(ρ+r)τpτ+t0




= E




τZ

0

e−(ρ+r)tx̃tdt− (1− e−(ρ+r)τ )
ρp̃

ρ+ r
− e−(ρ+r)τpτ+t0




where x̃t = (xh − xl)1xt=xh . So, an agent’s value for a stopping time under any policy p is

the same for θ and eθ(θ). As a result, θ ∈ Θ∗ ⇐⇒ eθ(θ) ∈ Θ∗. By Proposition B.1,

eθ(θ) ∈ Θ∗ ⇐⇒ exh ∈
 
ρep− (ρ+ r)p,

ρ+ r + λ

ρ+ r
(ρep− (ρ+ r)p)

#

⇐⇒ xh − xl ∈
 
ρp− (ρ+ r)p− xl,

ρ+ r + λ

ρ+ r
(ρp− (ρ+ r)p− xl)

#

⇐⇒ xh − xl ∈
 
(ρ+ r)∆l, (ρ+ r + λ)∆l

#

where the last line follows by equation (A.1), and the result follows. □

C Proof of Theorem 1 (and preliminary results)

Let τa ≡ inf
t≥t0

{t − t0|at(xt−t0) = 1} i.e., the stopping time induced by a. Let M denote the

set of policies (p, a) ∈ M but without the requirement that the stopping time induced by a

is optimal for each agent (so M ⊂ M). Let

tnext(t, a) ≡ inf
s>t

{s|as(xh) = 1}(C.1)
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wh(t) ≡ w(xh, t)(C.2)

v(t) ≡
tZ

0

e−rs1− e−(ρ+λ)s

ρ+ λ
ds(C.3)

v0(t) ≡ 1− e−(ρ+λ+r)t

(ρ+ r + λ)(ρ+ λ)
(C.4)

P ≡ [p,−W (xh, 0, τ
∞)](C.5)

where W (xh, 0, τ
∞) ≡ W (xh, 0, τ

∞,p) for any p. Plugging in the definition of W (xh, 0, τ∞),

P =

�
p,

ρp− xl

ρ+ r
− xh

ρ+ r + λ

�
.

The following lemmas are proved in Online Appendix E.

Lemma C.1. Fix t ∈ R+ and t < t with at(x
h) = 1. If as(x

h) = 0 for all s ∈ (t, t] then,

µh
t =

1− e−(ρ+λ)(t−t)

ρ+ λ

Lemma C.2. When αl = 0,

V ∗ =





sup
(p,a)∈M

V (p,a)

subject to

W (xh, t, τa,p) ≥ W ∗(xh, t,p) for each t

pt = p if at(x
h) = 0

at(x
h) = at(x

l) for each t

(C.6)

Since at(x
h) = at(x

l) for each t, I drop the dependence of at on x for the case αl = 0.

Lemma C.3. Suppose that αl = 0, θ ∈ Θ∗, and there exists V : P → R that satisfies

(C.7) V(p) =





sup
t≥0,
p′∈P

−v(t) + e−rtV(p′)

subject to

wh(t)− e−(ρ+r)tp′ ≤ −p

and there is a policy, (tV (·), p′V (·)), that achieves value V(p) and has inf
p∈P

tV (p) > 0. Then,

V ∗ = max
t0≥0

�
−v(t0) + e−rt0V(p)

	
.

Define t(p) implicitly by,

(C.8) wh ◦ t(p)− e−(ρ+r)t(p)p = −p.
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Lemma C.4. If θ ∈ Θ∗, then equation (C.8) has a unique strictly positive solution, t(p),

which is strictly increasing for p ∈ P, and inf
p∈P

t(p) > 0. Further, for any p ∈ P and t ≥ t(p),

wh(t)− e−(ρ+r)tp ≤ −p.

Lemma C.5. Suppose that θ ∈ Θ∗. For any t > 0,

v0(t) + e−rt v0(t)

1− e−rt

is decreasing in t for any t ≥ t, where v0(t) is defined by equation (C.4). Further,

v0(t(p)) + e−rt(p)
v0(t(p))

1− e−rt(p)

is decreasing in p.

Proposition C.1. Suppose that αl = 0 and θ ∈ Θ∗. Let p′ : P → P be defined by p′(p) = p

and t : P → R+ ∪ {∞} be defined, for each p ∈ P, as the unique strictly positive solution to

(C.8), and suppose V∗(p) is the value function associated with (t(·), p′(·)). Then,

V ∗ = max
t0≥0

�
−v(t0) + e−rt0V∗(p)

	
.

Proof of Proposition C.1: To prove the result, I show that V∗(p) and (t(·), p′(·)) satisfy
the premise of Lemma C.3, i.e. (C.7) is satisfied for V∗(.) and inf

p∈P
t(p) > 0. The latter

follows from Lemma C.4, so I need only show the former.

Observe that

v(t) =
1− e−rt

r(ρ+ λ)
− 1− e−(ρ+r+λ)t

(ρ+ λ)(ρ+ r + λ)
=

1− e−rt

r(ρ+ λ)
− v0(t).(C.9)

Let V∗,0(p) ≡ v0(t(p)) + e−rt(p) v0(t(p))

1−e−rt(p) , and observe further that,

V∗(p) = −v(t(p))− e−rt(p)
v(t(p))

1− e−rt(p)
=

−1

r(ρ+ λ)
+V∗,0(p)(C.10)

where the first equality follows by definition of V∗(p) and the second by plugging in (C.9)

and the definition of V∗,0(p). Plugging (C.9) and (C.10) into (C.7), it is sufficient to show

(C.11) 0 =





sup
t≥0,
p′∈P

v0(t) + e−rtV∗,0(p′)−V∗,0(p)

subject to

wh(t)− e−(ρ+r)tp′ ≤ −p

for any p ∈ P . To prove this, it is sufficient to argue that the right-hand side of (C.11)

is attained at p′ = p and t = t(p), since in this case the objective is 0. To compute the
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value of the right-hand side of (C.11), it is sufficient to constrain to t ≤ t(p). To see this,

observe that for any t ≥ t(p), an optimal choice of p′ is p (feasible by Lemma C.4), since

V∗,0(p′) is decreasing in p′ by the second part of Lemma C.5. By the first part of Lemma C.5,

v0(t) + e−rtV∗,0(p) is decreasing in t, so among choices t ≥ t(p), it is optimal to set t = t(p).

Next, I argue the objective on the right-hand side of (C.11) is bounded above by 0 in

three simple cases. First, if t = t(p), Lemma C.5 implies the objective in (C.11) is maximized

over p′ at p′ = p (where it is 0). Second, if t = 0, the incentive constraint in (C.11) requires

that p′ ≤ p, in which case the objective on the right-hand side of (C.11) is bounded above

by 0, again by Lemma C.5. Third, if p′ = p, the incentive constraint in (C.11) requires that

t = t(p), and the objective equals 0.49 Hence, any feasible choice (t, p′) such that t = t(p),

p′ = p, or t = 0, leads to a value of the objective in (C.11) no larger than 0.

I proceed now to remaining cases, assuming that t < t(p), p′ > p and t > 0. Let

f ≡ ρ+ λ+ r and g ≡ ρ+ r. Also, let ϕ(b) ≡ (1− e−fb). To prove the result, it is sufficient

to show, after plugging in the definition of V∗,0(p) and rearranging, that

ϕ(t(p)) + e−rt(p)ϕ(t(p)) +
e−r(t(p)+t(p))

1− e−rt(p)
ϕ(t(p)) ≥ ϕ(t) + e−rtϕ(t(p′)) +

e−r(t+t(p′))

1− e−rt(p)
ϕ(t(p))

(C.12)

for any t, p, p′ such that

(xh − xl)
1− e−ft

f
− ρp− xl

ρ+ r
(1− e−gt)− p′e−gt ≤ −p.(C.13)

Substitute for p′ on the left-hand side of (C.13) using (C.8) to get,

ϕ(t) + e−gtϕ(t(p′))− c(1− e−g(t+t(p′))) ≤ −
�

f

xh − xl

�
(p− p)(C.14)

where c ≡ f(ρp−xl−(ρ+r)p)
(xh−xl)g

. By definition, (C.14) holds with equality for (t, p′) = (t(p), p), so

(C.14) can be written

ϕ(t) + e−gtϕ(t(p′))− c(1− e−g(t+t(p′))) ≤ ϕ(t(p)) + e−gt(p)ϕ(t(p))− c(1− e−g(t(p)+t(p)))

The definition of t(p) implies c = 1−e−ft(p)

1−e−gt(p) . Plugging this in on both sides and rearranging,

ϕ(t) + e−gtϕ(t(p′)) +
e−g(t+t(p′))

1− e−gt(p)
ϕ(t(p)) ≤ ϕ(t(p)) + e−gt(p)ϕ(t(p)) +

e−g(t(p)+t(p))

1− e−gt(p)
ϕ(t(p))

(C.15)

So to prove the result, it is sufficient to show that for any t, p′, p such that (C.15) holds, (C.12)

49The only exception is if p = p, in which case t = 0 is feasible. In that case, the objective is 0 as well.
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holds as well. Observe that (C.15) and (C.12) are each a special case of the inequality,

ϕ(t) + e−aftϕ(t(p′)) +
e−af(t+t(p′))

1− e−aft(p)
ϕ(t(p)) ≤ ϕ(t(p)) + e−aft(p)ϕ(t(p)) +

e−af(t(p)+t(p))

1− e−aft(p)
ϕ(t(p))

(C.16)

at a = g
f
and a = r

f
, respectively.

For any t, p′, let

z ≡ e−ft(p), zp ≡ e−ft(p), u ≡ e−ft, y ≡ e−ft(p′)(C.17)

By Lemma C.4, z ≥ max{zp, y}. If z = 0, P is a singleton and there is nothing to prove,

so I proceed under the assumption that z > 0. I assumed earlier that t < t(p), p′ > p and

t > 0, which implies that 1 > u > zp and y < z.

Plug the definitions in (C.17) into (C.16) and multiply both sides by 1− za to get,50

(1− u)(1− za) + ua(1− y)(1− za) + (uy)a(1− z)(C.18)

≤ (1− zp)(1− za) + zap(1− z)(1− za) + (zzp)
a(1− z).

After rearranging and canceling terms,

0 ≤ (u− zp)− ua(1− y) + (uz)a(1− y)− (uy)a(1− z)

+ za(1− u) + (zpz
a − zapz) + (zap − za)

⇐⇒ 0 ≤ (u− zp) + (uz)a(1− y) + zap(1− z)− (uy)a(1− z)− ua(1− y)− za(u− zp)| {z }
h(a;u,y,z,zp)≡

The crucial step is the following claim:

if 0 ≤ h(a; u, y, z, zp) for a ∈ (0, 1), then 0 < h(a; u, y, z, zp) for all 0 < a′ < a.(C*)

A direct implication is that (C.15) implies (C.12), and so (C.11) follows. To prove (C*),

there are three cases to consider.

Case 1: y > 0 and uy < zp : In this case, instead of showing (C*) for h, I will show it

for h̃(a) ≡ h(a)
(uy)a

, which can be written,

h̃(a) =
(u− zp)

(uy)a
+ (

z

y
)a(1− y) + (

zp
uy

)a(1− z)− (1− z)− (
1

y
)a(1− y)− (

z

uy
)a(u− zp)

from which (C*) for h can be recovered. Note that h̃ is smooth for any feasible choices of

u, y, z, zp with y > 0. When it is clear, I suppress the dependence of h on all inputs but a.

50Note that this multiplication does not change the direction of the inequality since z ∈ (0, 1).
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To prove (C*), it is sufficient to show that ∂h̃2

∂a2
intersects zero at most twice. To see this,

three observations prove key: (i) 1 > u > zp implies h̃(a) → ∞ as a → ∞, (ii) uy < zp and

y < z imply h̃(a) → −(1− z) as a → −∞ and (iii) h̃(1) = h̃(0) = 0.

Violating (C*) requires the existence of a0 < 0 < a1 < a2 < 1 < a3 such that h̃(a0) < 0

(observation (ii)), h̃(a1) ≤ 0, h̃(a2) ≥ 0, and h̃(a3) > 0 (observation (i)). As a result,

ensuring that observation (iii) is satisfied (while maintaining the smoothness of h) requires

the existence of points b0 < b1 < b2 < b3 such that at h̃′′(b0), h̃′′(b2) < 0 while h̃′′(b1), h̃′′(b3) >

0, the existence of which implies that ∂h̃2

∂a2
intersects zero at least three times.

To show that ∂h̃2

∂a2
intersects zero at most twice, write

∂h̃2(a)

∂a2
=
(u− zp)

(uy)a
ln(

1

uy
)2 + (

z

y
)a(1− y)ln(

z

y
)2

+ (
zp
uy

)a(1− z)ln(
zp
uy

)2 − (
1

y
)a(1− y)ln(

1

y
)2 − (

z

uy
)a(u− zp)ln(

z

uy
)2

the zeros of which are the same as the zeros of the function G(a) ≡ ya ∂h̃2

∂a2
. Plugging in,

G(a) =
(u− zp)

(u)a
ln(

1

uy
)2 + (z)a(1− y)ln(

z

y
)2 + (

zp
u
)a(1− z)ln(

zp
uy

)2

− (1− y)ln(
1

y
)2 − (

z

u
)a(u− zp)ln(

z

uy
)2

To show G has at most two zeros, I show that ∂G(a)
∂a

has at most one zero. Differentiating,

∂G

∂a
=
(u− zp)

(u)a
ln(

1

uy
)2ln(

1

u
) + (z)a(1− y)ln(

z

y
)2ln(z)

+ (
zp
u
)a(1− z)ln(

zp
uy

)2ln(
zp
u
)− ln(

z

u
)(
z

u
)a(u− zp)ln(

z

uy
)2

Finally, ∂G
∂a

has the same number of zeros as J ≡ ua ∂G
∂a

za
. Differentiating J ,

∂J

∂a
=
(u− zp)

(z)a
ln(

1

uy
)2ln(

1

u
)ln(

1

z
) + (u)a(1− y)ln(

z

y
)2ln(z)ln(u)

+ (
zp
z
)a(1− z)ln(

zp
uy

)2ln(
zp
u
)ln(

zp
z
)

Recalling that 1 > u > zp > 0 and 1 ≥ z ≥ zp > 0, all the terms on the right-hand side are

positive and the first is strictly positive. As a result, J is a strictly increasing function with

at most one zero. The same is then true of ∂G(a)
∂a

. So, G has at most two zeros, as does ∂h̃2

∂a2
.
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Case 2: uy ≥ zp: I show that for a ∈ (0, 1), h(a) < 0.51 Suppose first that zp = uy. Then,

h(a; u, y, z, zp) = (u− zp) + (uz)a(1− y) + zap(1− z)− (uy)a(1− z)− ua(1− y)− za(u− zp)

= (1− y)(u− ua)(1− za) < 0

where the inequality follows from u < ua for any a ∈ (0, 1). Next, I show that ∂h
∂zp

≥ 0 if

zp < uy. This will imply that for zp ≤ uy, h is maximized at zp = uy, where it is negative,

and so the proof will be concluded.

Let G(z) ≡ ∂h
∂zp

= za + a
zp1−a (1 − z) − 1 and differentiate to get ∂G

∂z
= a

z1−a − a
z1−a
p

. Since

G(1) ≥ 0 and ∂G
∂z
(z) ≤ 0 for all z ∈ [zp, 1], then G(z) ≥ 0 for all z ∈ [zp, 1]. As a result,

∂h
∂zp

≥ 0 for all z ∈ [zp, 1] and since z ∈ [zp, 1], this concludes the proof.

Case 3: y = 0: Observe now that h(0) = 1 − z, h(1) = 0 and h(∞) = u − zp > 0. Then,

to violate (C*), ∂h(a)
∂a

must have at least three zeros on a ≥ 0. So, I prove here that ∂h
∂a
(a)

has at most two zeros on a ≥ 0.

∂h

∂a
= ln(uz)(uz)a + ln(zp)z

a
p(1− z)− ln(u)ua − ln(z)za(u− zp)

= zap

�
ln(uz)(

uz

zp
)a + ln(zp)(1− z)− ln(u)(

u

zp
)a − ln(z)(

z

zp
)a(u− zp)

�

| {z }
h1(a)

To conclude, I show that h1(a) has at most two zeros. Differentiate to get

∂h1

∂a
(a) = ln(uz)ln(

uz

zp
)(
uz

zp
)a − ln(u)ln(

u

zp
)(

u

zp
)a − ln(z)ln(

z

zp
)(

z

zp
)a(u− zp)

=

�
uz

zp

�a �
ln(uz)ln(

uz

zp
)− ln(u)ln(

u

zp
)(
1

z
)a − ln(z)ln(

z

zp
)(
1

u
)a(u− zp)

�

| {z }
A(a)

.

Since zp ≤ z and 1 > u > zp, A(a) is increasing in a for a ≥ 0. As a result, ∂h1(a)
∂a

has at

most one zero for a ≥ 0, and so ∂h(a)
∂a

= h1(a) has at most two zeros on a ≥ 0. □

Proof of Theorem 1: For θ ∈ Θ∗, I first prove the result in case αl = 0.

αl = 0. Suppose αl = 0 and θ ∈ Θ∗. The result follows by applying Proposition C.1, so that

V ∗ = max
t0

{v(t0) + e−rt0V∗(p)}, and by repeatedly substituting in for V∗(p).

51That is, there can never be a pair (u, y) s.t. uy ≥ zp and (u, y) satisfies IC. Intuitively, it would be as
if the regulator said, in between 0 and t(p), there will be two opportunities for reduced penalties and the
second opportunity will have a penalty of p. By the definition of t(p), such a policy cannot be incentive
compatible.
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αl ≥ 0. When θ /∈ Θ∗, Proposition 2 leads to the result. Suppose instead that θ ∈ Θ∗.

Fix some parameters of the model, θ ∈ Θ∗. Rather than studying problem (P), consider

(Ph) V ∗
h ≡ sup

(p,a)∈M

tZ

0

µh
t

Problem (Ph) is simply (P) when αl = 0. Applying the result for αl = 0, an optimal policy

in (Ph) is (p∗, a∗) defined by: (i) p∗t0+nt(p) = 0 for some t0 with t(p) defined by (C.8), (ii)

p∗t = p otherwise, and (iii) a∗t (x) = 1 if and only if t ∈ {t0, t0 + nt(p))}n∈N.
Since θ ∈ Θ∗, Proposition 2 implies that 0 ≤ (ρ + r)∆l = ρp − xl − (ρ + r)p. So, I can

apply Lemma A.2 to transform (p∗, a∗) into (p̃∗, ã∗) ∈ L which has the properties:

• ã∗t (x
l) = 1 and ã∗t (x

h) = at(x
h) for all t ≥ 0

• p∗nt(p)+t0
= p for n ∈ N for some t0 ≥ 0

• p∗t = e−(ρ+r)tnext(t,a∗)p+ (1− e−(ρ+r)tnext(t,a∗)) (ρp−xl)
ρ+r

for all t /∈ {t0, t0 + nt(p)}n∈N
where the last two lines translate the indifference requirement of an element in L to (p∗, a∗).

Lemma A.2 implies that V ∗ = sup
(p,a)∈L

V (p, a) = V ∗
h , so (p∗, a∗) is an optimal policy. □

D Proof of Proposition 1

Proof of Proposition 1: Because pv is constant and hence continuous, Theorem 3 in Ch.

3 in Shiryaev (2007) can be applied to show that there exists some D ⊂ {xh, xl} such that

(i) τ ∗v ≡ inf
t≥t0

{t− t0|xt−t0 ∈ D} and (ii) if τ is any other optimal stopping time for the agent,

then P(τ ∗v ≤ τ) = 1.52 As a result, it is without loss of generality for the regulator to restrict

to recommendation policies a such that at(x) = as(x) for all t, s ≥ 0 and x ∈ {xh, xl}, since
these induce all stopping times of the form τ ∗v .

To prove the proposition, it is thus sufficient to argue that τ ∗p ≤ τ ∗v for all v ≥ p. Given the

characterization of τ ∗v described above, the agent’s value can be computed by considering only

three possibilities (i) τ ∗v = τ 0 ≡ 0, (ii) τ ∗v = τ∞ ≡ ∞, or (iii) τ ∗v = τ l ≡ inf
t≥t0

{t−t0|xt−t0 = xl}.
The agent’s value for τ∞ is independent of v. The agent’s values for τ 0 and τ l are

E
�
W (x, t, τ 0,pv)

�
= −v

E
�
W (x, t, τ l,pv)

�
= 1x=xh

�
xh

ρ+ r + λ
+

xl − ρp

ρ+ r
− vλ

ρ+ r + λ

�
+ 1x=xl (−v)

52Application of the theorem in Shiryaev (2007) requires a re-casting of the stopping problem presented
here. In particular, the state space must be expanded to account for the accumulating value. This formulation
is omitted.
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To conclude that τ ∗p ≤ τ ∗v , observe that decreasing v increases E [W (x, t, τ 0,pv)] by weakly

more than E
�
W (x, t, τ l,pv)

�
. Similarly, decreasing v weakly increases E

�
W (x, t, τ l,pv)

�
but

has no effect on E [W (x, t, τ∞,pv)]. Decreasing v can therefore only induce a switch of an

optimal stopping time from τ∞ to one of the other two, or from τ l to τ 0. The conclusion

follows. □
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